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Abstract. The Ambient Calculus is a process calculus where processes may reside
within a hierarchy of locations. The purpose of this calculus is to study mobility; to
this end, processes can move through the location hierarchy and modify it. Therefore,
mobility is seen as the change of spatial configurations over time. In order to describe
properties of mobile computations we devise a modal logic, solidly based on the Am-
bient Calculus, that can talk about space as well as time. We introduce logical oper-
ators that can be used to make assertions about locations and their names, and we
study their properties.

1  Introduction
In the course of our ongoing work on mobility [12,10,26], we have often struggled to ex-
press precisely certain properties of mobile computations. Informally, these are properties
such as “the agent has gone away”, “eventually the agent crosses the firewall”, “every agent
always carries a suitcase”, “somewhere there is a virus”, or “there is always at most one
agent called n here”. There are several conceivable ways of formalizing these assertions. It
is possible to express some of them in terms of equations [26], but this is sometimes diffi-
cult or unnatural. It is easier to express some of them as properties of computational traces,
but this is very low-level.

Modal logics (particularly, temporal logics) have emerged in many domains as a good
compromise between expressiveness and abstraction. In addition, many modal logics sup-
port useful computational applications, such as model checking. In our context, it makes
sense to talk about properties that hold at particular locations, and it becomes natural to con-
sider spatial modalities for properties that hold at a certain location, at some location or at
every location. For example, we have the following correspondence between spatial con-
structs in the Ambient Calculus [12] and certain formulas:

We have a logical constant 0 that is satisfied by the process 0 representing void. We have
logical propositions of the form n[�] (meaning that � holds at location n) that are satisfied
by processes of the form n[P] (meaning that process P is located at n) provided that P sat-
isfies �. We have logical propositions of the form �� | �� (meaning that ���and ���hold
contiguously) which are satisfied by contiguous processes of the form P’ | P” if P’ satisfies

Processes
0
n[P]
P | Q

(void)
(location)
(composition)

Formulas
0
n[�]
� | �

(there is nothing here)
(there is one thing here)
(there are two things here)
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���and P” satisfies ��, or vice versa.
These spatial modalities have an intensional flavor that distinguishes our logic from

other modal logics for concurrency. Previous work in the area concentrates on properties
that are invariant up to strong equivalences such as bisimulation [27,19], while our proper-
ties are invariant only up to simple spatial rearrangements. Some of our techniques can be
usefully applied to other process calculi, even ones that do not have locations [5].

The π-calculus notion of name restriction [30], initially intended to represent hidden
communication channels, has been used also to represent hidden encryption keys [2] and
as the basis for definitions of secrecy [2, 11]. In the context of the Ambient Calculus [12],
name restriction can be used to represent hidden locations and (by extrapolating [11] and
[10]) secret locations. In general, we would like to have process calculi where we can rep-
resent protocols for creating shared encryption keys and secret locations; name restriction
seems crucial to all this.

In π-calculus notation, (νn)P is a restriction of the name n in the process P, meaning
that n is not currently known outside the scope of P. The prefix (νn) is more a bookkeeping
device than a barrier. It is quite possible for P to communicate n to some external process;
then the restriction (νn) must be formally pushed outwards to encompass the new scope of
n and maintain the scoping invariant; this procedure is called name extrusion. Processes are
considered equivalent up to extrusion; that is, extrusion is not regarded as a computational
step. Conversely, when a name is forgotten in part of a process, the scope of (νn) may be
restricted; this is called name intrusion. Manipulation of (νn) prefixes includes, in particu-
lar, renaming and swapping of prefixes, so that there is no obvious way of talking about
“the first restricted name” or any particular restricted name of a process. 

With our spatial modalities, we can describe detailed properties of processes. If we
now consider restriction, what does it mean to describe properties of restricted names? We
would like to be able to say, for example, “a shared key is established between locations a
and b”, or “a secret location is created that only a and b can access”. In a protocol that es-
tablishes such shared secrets, the secrets are typically represented by restricted names. The
problem is that there is no obvious way to talk about such restricted names in the specifi-
cation of the protocol. We might be tempted to use ordinary existential quantification, and
say “there exists a name shared between locations a and b”. But this is not good enough,
because we want that name to be fresh and unknown to other locations or potential attack-
ers.

Therefore, we want a new form of quantification that can be read as “in the process
there exists a restricted name which we shall call x, and such that �”, where x is a variable
that ranges over names, and �� is some property that may involve x. Let us indicate this
quantifier as Hx.�; this formula is meant to correspond somehow to a process of the form
(νn)P where x denotes n. However, since (νn) can float, the matching of Hx to any partic-
ular (νn) is not obvious.

This means that the logical rules of our tentative Hx.� quantifier are going to be fairly
complex, or at least unfamiliar. We have approached this complexity by splitting Hx.��into
two operators; one for quantifying over fresh names, and one for mentioning restricted
names. The first operator is the Gabbay-Pitts quantifier, �x.�, adapted to our context: it
quantifies over all names that do not occur free either in the formula ��or in the described
process. The second is a binary operator (not a quantifier) called revelation, n®�, which
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means that it is possible to reveal a restricted name as the given name n, and then assert �.
(Revelation fails to hold if it would lead to a name clash in the process.)

We investigate the properties of n®��and �x.��separately. We combine them to define
Hx.� as �x.x®�, and then we study the derived properties of Hx.�.

This paper is a updated version of both [13] and [14], bringing together those confer-
ence papers into a better integrated and self-contained whole. In Section 2 we give an over-
view of the Ambient Calculus. In Section 3 we introduce our Ambient Logic and its
satisfaction semantics. In Section 4 we define logical sequents, and we derive a number of
logical truths for all logical connectives except revelation and hiding. In Section 5 we study
the logical properties of revelation and hiding, and explain the difficulties in defining a hid-
den-name quantifier. To that end, in Section 6 we study a fresh-name quantifier. In Section
7 we are then able to define a proper hidden-name quantifier, and we investigate its prop-
erties. In Section 8 we compare our logic to other logics, and in particular to Intuitionistic
Linear Logic. In Section 9 we discuss related work.

2  The Ambient Calculus

2.1  Ambients
We summarize a modified version of the basic Ambient Calculus of [12]. The changes con-
sist in strengthening the definition of structural congruence so that it characterizes the in-
tended equivalence of spatial configurations. 

The following table summarizes the syntax of processes. We have separated the pro-
cess constructs into spatial and temporal. This is similar to the distinction between static
and dynamic constructs in CCS [29]. This paper focuses on the spatial constructs; the tem-
poral constructs and the dynamic behavior are necessary but secondary, for our purposes.

2.2  Ambients
Processes

P,Q,R ::=
(νn)P
0
P | Q
!P
M[P]
M.P
(n).P
�M�

processes 
restriction
void
composition
replication
ambient
capability action
input action
output action

spatial

temporal
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The set of free names of a process P, written fn(P) is defined as follows, where the only
binders are restriction and the input action.

Free names

We write P{n←M} for the substitution of the capability M for each free occurrence of
the name n in the process P. Similarly for M{n←M’}. We identify processes up to renam-
ing of bound names, that is, we assume the identities (νn)P = (νm)P{n←m} and (n).P =
(m).P{n←m}, where, in both equations, m � fn(P).

We use some syntactic conventions. We use parentheses for precedence. The process
0 is often omitted in the contexts n[0] and M.0, yielding n[] and M. Composition has the
weakest binding power, so that the expression (νn)P | Q is read ((νn)P) | Q, the expression
!P | Q is read (!P) | Q, the expression M.P | Q is read (M.P) | Q, and the expression (n).P |
Q is read ((n).P) | Q.

Structural congruence is a relation between processes used as an aid in the definition
of reduction. With respect to [12], the structural rules for replication have been refined.

Structural Congruence

M ::=
n
in M
out M
open M
ε
M.M’

capabilities
name
can enter into M
can exit out of M
can open M
null
path 

fn((νn)P) � fn(P) – {n}
fn(0) � �

fn(P | Q) � fn(P) ∪ fn(Q)
fn(!P) � fn(P)
fn(M[P]) � fn(M) ∪ fn(P)
fn(M.P) � fn(M) ∪ fn(P)
fn((n).P) � fn(P) – {n}
fn(�M�) � fn(M)

fn(n) � {n}
fn(in M) � fn(M)
fn(out M) � fn(M)
fn(open M) � fn(M)
fn(ε) � �

fn(M.M’) � fn(M) ∪ fn(M’)

P � P
P � Q � Q � P
P � Q, Q � R � P � R

(Struct Refl)
(Struct Symm)
(Struct Trans)

P � Q � (νn)P � (νn)Q
P � Q � P | R � Q | R
P � Q � !P � !Q
P � Q � n[P] � n[Q]
P � Q � M.P � M.Q
P � Q � (n).P � (n).Q

(Struct Res)
(Struct Par)
(Struct Repl)
(Struct Amb)
(Struct Action)
(Struct Input)
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The reduction relation, defined in the following table, describes the dynamic behavior
of ambients. In particular, the rules (Red In), (Red Out) and (Red Open) represent mobility,
while (Red Comm) represents local communication (see [12] for an extended discussion).
For example, the process a[p[out a. in b. �m�]] | b[open p. (n). n[]] represents a packet p that
travels out of host a and into host b, where it is opened, and its contents m are read and used
to create a new ambient. The process reduces in four steps (illustrating each of the four re-
duction rules) to the residual process a[] | b[m[]].

Reduction

2-1  Lemmas
(1) P � Q � fn(P) = fn(Q)
(2) P | Q ��0 iff P ��0 and Q ��0.
(3) n[P] � �0.
(4) n[P] ��Q | R iff either Q ��n[P] and R ��0, or Q ��0 and R ��n[P].
(5) m[P] � n[Q] iff m = n and P � Q.

ε.P � P
(M.M’).P � M.M’.P

(Struct ε)
(Struct .)

(νn)(νm)P � (νm)(νn)P
(νn)0 � 0
(νn)(P | Q) � P | (νn)Q if n � fn(P)
(νn)(m[P]) � m[(νn)P] if n ≠ m

(Struct Res Res)
(Struct Res Zero)
(Struct Res Par)
(Struct Res Amb)

P | 0 � P
P | Q � Q | P
(P | Q) | R � P | (Q | R)

(Struct Par Zero)
(Struct Par Comm)
(Struct Par Assoc)

!0 � 0
!(P | Q) � !P | !Q
!P � P | !P
!P � !!P

(Struct Repl Zero)
(Struct Repl Par)
(Struct Repl Copy)
(Struct Repl Repl)

n[in m. P | Q] | m[R] 	

� m[n[P | Q] | R]
m[n[out m. P | Q] | R] 	

� n[P | Q] | m[R]
open n. P | n[Q] 	

� P | Q
(n).P | �M� 	

� P{n←M}

(Red In)
(Red Out)
(Red Open)
(Red Comm)

P 	

� Q � (νn)P 	

� (νn)Q
P 	

� Q � P | R 	

� Q | R
P 	

� Q � n[P] 	

� n[Q]

(Red Res)
(Red Par)
(Red Amb)

P’ � P, P 	

� Q, Q � Q’ � P’ 	

� Q’ (Red �)

	

�* reflexive and transitive closure of 	

�
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(6) m[P] | n[Q] ��m’[P’] | n’[Q’] iff:
either m = m’, n = n’, P � P’, Q � Q’,
or m = n’, n = m’, P � Q’, Q � P’.

(7) (νn)P � 0 � P � 0
(8) (νn)P � m[Q] � �R
Π. P � m[R] ∧ Q � (νn)R (for n ≠ m)
(9) (νn)P � Q’ | Q” � �R’,R”
Π. P � R’ | R” ∧ Q’ � (νn)R’ ∧ Q” � (νn)R”
�

See [17] for proofs of these lemmas.

Remark. It is not true that (νn)P � (νn)Q implies P � Q. Take P = n[] and Q = (νn)n[]; then
(νn)n[] � (νn)(νn)n[] but n[] � �(νn)n[]. �

3  The Logic
In a modal logic, the truth of a formula is relative to a state (or world). In our case, the truth
of a space-time modal formula is relative to the here and now. Each formula talks about the
current time, that is, the current state of execution, and the current place, that is, the current
location. For example, the formula n[0] is read: there is here and now an empty location
called n. The operator n[�] represents a single step in space, allowing us to talk about the
place one step down into n. Another operator, ��, allows us to talk about an arbitrary num-
ber of steps in space; this is akin to the temporal eventuality operator, ��.

3.1  Logical Formulas
The syntax of logical formulas is summarized below. This is a modal predicate logic with
classical negation. As usual, many standard connectives are interdefinable; we take T, ¬,
∨, �, � as primitive, and F, �, ∧, �, � as derived.

The meaning of the formulas will be given shortly in terms of a satisfaction relation.
Informally, the first three formulas (true, negation, disjunction) give propositional logic.
The next five (void, composition and its adjunct, location and its adjunct) describe tree-like
structures of locations. Revelation and its adjunct are discussed in detail later. The two spa-
tial and temporal modalities make assertions about states that may happen “further away”
in space or time respectively. Quantified variables range only over names: these variables
may appear in the location and revelation constructs, and their adjuncts.

Logical Formulas

η, µ a name n or a variable x
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Free Names and Free Variables

A formula � is closed if fv(�) = �. Substitution �{η←µ} of a name or variable µ for
another name or variable η in a formula �, is defined in the usual way. We identify formu-
las up to renaming of bound variables, that is, we assume the identity �x.� = �y.�{x←y},
where y � fv(�). We often write η[] for η[0], �F for ��F, and �¬ for ¬�.

�, �, � ::=
T
¬�

� ∨ �
0
� | �
���
η[�]
�@η
η®�
��η
��

��
�x.�

true
negation
disjunction
void
composition
guarantee
location
placement
revelation
hiding
sometime modality
somewhere modality
universal quantification

fn(n) � {n}
fn(x) � �

fv(n) � �
fv(x) � {x}

fn(T) � �
fn(¬�) � fn(�)
fn(� ∨ �) � fn(�)∪fn(�)

fv(T) � �
fv(¬�) � fv(�)
fv(� ∨ �) � fv(�)∪fv(�)

fn(0) � �
fn(� | �) � fn(�)∪fn(�)
fn(���) � fn(�)∪fn(�)
fn(η[�]) � fn(η)∪fn(�)
fn(�@η) � fn(�)∪fn(η)
fn(η®�) � fn(η)∪fn(�)
fn(��η) � fn(�)∪fn(η)

fv(0) � �
fv(� | �) � fv(�)∪fv(�)
fv(���) � fv(�)∪fv(�)
fv(η[�]) � fv(η)∪fv(�)
fv(�@η) � fv(�)∪fv(η)
fv(η®�) � fv(η)∪fv(�)
fv(��η) � fv(�)∪fv(η)

fn(��) � fn(�)
fn(��) � fn(�)

fv(��) � fv(�)
fv(��) � fv(�)

fn(�x.�) � fn(�) fv(�x.�) � fv(�)-{x}

fn(�1,...,�k) � fn(�1)∪ ... ∪fn(�k) fv(�1,...,�k) � fv(�1)∪ ... ∪fv(�k)
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3.2  Satisfaction
The satisfaction relation P � ��means that the process P satisfies the closed formula �. The
definition of satisfaction is based heavily on the structural congruence relation. The satis-
faction relation is defined inductively in the following tables, where Π is the sort of pro-
cesses, Φ is the sort of formulas, ϑ is the sort of variables, and Λ is the sort of names. We
use similar syntax for logical connectives at the meta-level and object-level, but this is un-
ambiguous.

The meaning of the temporal modality is given by reductions in the operational seman-
tics of the Ambient Calculus. For the spatial modality, we need the following definitions.
The relation P�P’ indicates that P contains P’ within exactly one level of nesting. Then,
P�*P’ is the reflexive and transitive closure of the previous relation, indicating that P con-
tains P’ at some nesting level. Note that P’ constitutes the entire contents of an enclosed
ambient.

Satisfaction

The first three connectives gives classical propositional logic. Any process satisfies the
formula T. A process satisfies the formula ¬� if it does not satisfy the formula �. A pro-
cess satisfies the formula � ∨ � if it satisfies either the�formula � or the�formula �.

The next group form the core of the process logic. A process P satisfies the formula 0
if P � 0. A process P satisfies the formula �� | �� if there exist processes P’ and P” such
that P has the shape P� | P� with P’ satisfying �� and P� satisfying ��. A process P satisfies
the formula n[�] if there exists a process P’ such that P has the shape n[P’] with P’ satis-
fying �. The connectives @ and �, can be used to express context/system specifications;
they were inspired by the wish to express security properties. A reading of P � �@n is that
P (together with its context) manages to satisfy � even when placed into a location called
n. A reading of P � ��� is that P (together with its context) manages to satisfy � under

P�P’ iff �n, P”. P � n[P’] | P”

�* is the reflexive and transitive closure of �

�P
Π.
�P
Π, �
Φ.
�P
Π, �,�
Φ.
�P
Π.
�P
Π, �,�
Φ.
�P
Π, �,�
Φ.
�P
Π, n
Λ, �
Φ.
�P
Π, �
Φ.
�P
Π, n
Λ, �
Φ.
�P
Π, �
Φ.

P � T
P � ¬�
P � �∨�
P � 0
P � � | �
P � ���
P � n[�]
P � �@n
P � n®�
P � ��n

� ¬ P � �
� P � � ∨ P � �
� P � 0
� �P’,P”
Π. P � P’|P” ∧ P’ � � ∧ P” � �
� �P’
Π. P’ � � � P|P’ � � 
� �P’
Π. P � n[P’] ∧ P’ � �
� n[P] � � 
� �P’
Π. P � (νn)P’ ∧ P’ � �
� (νn)P � � 

�P
Π, �
Φ.
�P
Π, �
Φ.
�P
Π, x
ϑ, �
Φ.

P � ��
P � ��

P � �x.�

� �P’
Π. P	
�*P’ ∧ P’ � �
� �P’
Π. P�*P’ ∧ P’ � �
� �m
Λ. P � �{x←m}
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any possible attack by an opponent that is bound to satisfy �. We will see that these two
connectives arise as natural adjuncts to the location and composition connectives.

The connective ® is used to reveal a restricted name. A process P satisfies the formula
n®� if it is possible to pull a restricted name of P to the top and call it n (this is not possible
if n is already free in P), and then strip off the restriction to leave a residual that satisfies �.
Examples: (νn)n[] � n®T, 0 � n®T, ¬ n[] � n®T, (νm)m[] � n®n[]. The connective � is
used to hide (restrict) a name: a process P satisfies the formula ��n if (νn)P satisfies �;
this connective arises as a natural adjunct to ®. Revelation and hiding are discussed further
in Section 5.

A process P satisfies the formula �� if � holds in the future for some residual P’ of
P, where “residual” is defined by P	
�*P’. A process P satisfies the formula �� if � holds
at some sublocation P’ within P, where “sublocation” is defined by P�*P’. 

Universal quantification ranges just over names. A process P satisfies the formula
�x.� if for all names m we have that P satisfies �{x←m}.

Remark: Given our policy of identifying formulas up to the renaming of bound variables,
we need to check that satisfaction is well defined with respect to the equation �x.� =
�y.�{x←y}, where y � fv(�). We need to show for all processes P, formulas �, and vari-
ables x and y such that y � fv(�) that P � �x.� if and only if P � �y.�{x←y}. By definition,
P � �y.�{x←y} if and only if �m
Λ. P � �{x←y}{y←m}. Since y � fv(�), we have
�{x←y}{y←m} = �{x←m}. Therefore, P � �y.�{x←y} if and only if �m
Λ. P �
�{x←m} This is the definition of satisfaction for �x.�. So it follows that y � fv(�) implies
that P � �x.� if and only if P � �y.�{x←y}. �

The following table lists some derived connectives, and it illustrates properties that can
be expressed in the logic. The informal meanings can be understood better by expanding
out the definitions from the table above. See also Section 3.3 for examples.

Derived Connectives

F � ¬T
� ∧ � � ¬(¬� ∨ ¬�)
� � � � ¬� ∨ �
� ⇔ � � (� � �) ∧ (� � �)
� || � � ¬(¬� | ¬�)
�� � � || F
�� � � | T ( ⇔ ¬(¬��))
�x.� � ¬�x.¬�

false
conjunction
implication
logical equivalence
decomposition
every component satisfies �
some component satisfies �
existential quantification over names
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Some syntactic conventions: Parentheses are used for explicit precedence.‘�’ binds more
strongly than ‘|’; they both bind more strongly than the standard logical connectives, which
have standard precedences. Quantifiers and modalities extend to the right as far as possible.
Postfix, ‘F’ binds more strongly than prefix‘¬’; moreover, in conjunction with �F we use
the notation �¬ for ¬�.

Some Expanded Definitions

The derived logical connectives can be read as follows:

• No process satisfies the formula F.

• A process satisfies the formula � ∧ � if it satisfies both the�formulas � and �.

• A process satisfies the formula � � � if either it does not satisfy the formula ��or
it satisfies the�formula �.

� � � ¬�¬�
�� � ¬�¬�
� ∝ � � ¬(� � ¬�)
� |� � � ¬(� | ¬�)
n[��] � ¬n[¬�]
�F � ��F
�¬ � ¬�
©η � ¬η®T

everytime modality
everywhere modality
fusion 
fusion adjunct
if there is an n, its contents satisfy �
��is unsatisfiable
��is false (it is not the full set of processes)
contains η

�P:Π.
�P:Π, �,�:Φ.
�P:Π, �,�:Φ.
�P:Π, �,�:Φ.
�P:Π, �,�:Φ.
�P:Π, �:Φ.
�P:Π, �:Φ.
�P:Π, x:ϑ, �:Φ.
�P:Π, �:Φ.
�P:Π, �:Φ.
�P:Π, �,�:Φ.
�P:Π, �,�:Φ.
�P:Π, �,�:Φ.
�P:Π, �:Φ.
�P:Π, �:Φ.
�P:Π, �:Φ.
�P:Π, �:Φ.
�P:Π.

¬ P � F
P � �∧�
P � ���
P � �⇔�

P � � || �
P � ��

P � ��

P � �x.�
P � ���
P � ��

P � T�(���)
P � �∝�
P � ��|� �
P � n[��]
P � �F

P � �F¬

P � �¬F

P � ©n

iff P � � ∧ P � �
iff P � � � P � �
iff P � � ⇔ P � �
iff �P’,P”:Π. P � P’|P” � P’ � � ∨ P” � �
iff �P’,P”:Π. P � P’|P” � P’ � �
iff �P’,P”:Π. P � P’|P” ∧ P’ � �
iff �m:Λ. P � �{x←m}
iff �P’:Π. P	
�* P’ � P’ � � 
iff �P’:Π. P�*P’ � P’ � �
iff �P’:Π. P’|P � � � P’|P � � (cf. P � ���)
iff �P’:Π. P’ � � ∧ P|P’ � �
iff �P’,P”:Π. P � P’|P” � (P’ � � � P” � �)
iff �P’:Π. P � n[P’] � P’ � �
iff �P’:Π. ¬ P’ � � 
iff �P’:Π. P’ � � 
iff �P’:Π. P’ � � 
iff ¬�P’:Π. P � (νn)P’ iff n
fn(P)
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• A process satisfies the formula � ⇔ � if it satisfies neither or both the�formulas �
and �.

• A process P satisfies the formula �� || �� if for every decomposition of P into pro-
cesses P’ and P” such that P � P� | P�, either P’ satisfies �� or P� satisfies ��. That
is, for every split, either one part satisfies �� or the other satisfies ��.

• A process P satisfies the formula �� if every parallel component P’ of P (such that
P � P� | P�,�including P’ = 0) satisfies the formula �. For example, “each n location
contains just an m location” can be written: (n[T]�n[m[T]])�

• A process P satisfies the formula �� if there is a parallel component P’ of P (such
that P � P� | P�) that satisfies the formula �. For example, “there is an n containing
an m” can be written: n[m[T]�]�. 

• A process P satisfies the formula �x.� if there is a name m such that P satisfies
�{x←m}. For example, “there is a location contained into a location with the same
name” can be written: �x.x[x[T]]

• A process P satisfies the formula �� if � holds in the future for every residual P’
of P, where “residual” is defined by P	
�*P’. For example, “there is always a loca-
tion n” can be written: �n[T].

• A process P satisfies the formula �� if � holds at every sublocation P’ within P,
where “sublocation” is defined by P�*P’. For example, “there is no location n can
be written: �¬(n[T]�).

• If process P satisfies the formula ���, it means that in every context that satisfies
�, the combination of P and the context satisfies �. Instead, for example, if process
P satisfies the formula T�(���), it means that in every context, if the combination
satisfies ��then the combination satisfies �.

• A process P satisfies the formula � ∝ � if there is a process P’ satisfying � that
can be composed with P to satisfy �.

• A process P satisfies the formula � |� � if for every decomposition of P, if one
part satisfies � then the other part satisfies �. 

• A process P satisfies n[��] iff in case P is a location called n, its contents satisfy �. 

• A process P satisfies the formula �F if no process satisfies �. A process P satisfies
the formula �F¬ if there is a process that satisfies �. A process P satisfies the for-
mula �¬F if every process satisfies �.

• A process P satisfies the formula ©n if n
fn(P). Examples: (x).n[] � ©n, 0 � ¬©n.

Fundamental Lemmas
The following lemmas are crucial in what follows.
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3-1  Lemma (Satisfaction is up to �)
(P � ��∧ P � P’) � P’ � �

Proof
A simple induction on the structure of �.

�

3-2  Lemma (Fresh renaming preserves ����)
Consider any process P and names m, m’, with m’ � fn(P). For all P’, if P � P’ then
m’ � fn(P’) and P{m←m’} � P’{m←m’}. Moreover, for all Q, if P{m←m’} � Q then
there is a P’ with P � P’, m’ � fn(P) and Q = P’{m←m’}.

�

3-3  Lemma (Fresh renaming preserves �) (Proof in the Appendix)

For all closed formulas �, processes P, and names m, m’, 
if m’��fn(P)∪fn(�) then P � � ⇔ P{m←m’} � �{m←m’}.

�

A proof of a negative formula
The proof of even a very simple negative formula requires techniques for analyzing the der-
ivation of structural congruences. For example, consider proving the following assertion,
where m ≠ n:

For a contradiction, suppose that m[] | n[] � �x. x[T] | x[T]. By definition, this means
there is a P such that m[] | n[] � P and there is a q with P � q[T] | q[T]. This implies that
there are processes P’ and P” such that m[] | n[] ��P’ | P” with P’ � q[T] and P” � q[T].
In turn, P’ � q[T] implies there is Q’ such that P’ ��q[Q’]. Similarly, P” � q[T] implies
there is Q” such that P” ��q[Q”]. In summary, we have:

According to the Lemmas 2-1, there are two ways in which this equation can have been
derived. In either case, it follows that m = q and n = q, and therefore m = n. This yields the
desired contradiction, as we are assuming that m ≠ n.

3.3  Expressiveness
In this section we provide simple examples of properties that can be stated within the logic,
and that can be verified against specific processes.

Mobility
The process:

m[] | n[] � ¬ �x. x[T] | x[T]

m[] | n[] ��q[Q’] | q[Q”]

P �  a[m[out a. in b. �c�]] | b[open m. (n). n[]]
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represents a message m with payload c being routed from location a to location b. The mes-
sage is opened when it reaches b; the payload c is read into the bound name n, and an empty
ambient c[] is then produced inside of b. Hence this process reduces to:

Using the satisfaction semantics of Section 3.2, we can check that various assertions hold
of P and its reduced form Q. For example:

A typical protocol specification consists of a conjunction of two assertions, one about
the initial state of the system and one about its possible or necessary final state. For exam-
ple, here we could state (a[m[T]] | T) ∧ ��(b[m[T]] | T) meaning that there is now an
m inside a, and that eventually there will be an m inside b. It is not possible to say directly
that these two m’s are the “same” ambient, but one can enrich the specification to say, for
example, that initially there is no m inside b and finally there is no m inside a.

Revelation
The revelation operator η®� can be used, in particular, to express the occurrence of free
names in processes. We start by defining a derived formula ©η:

We can then state properties such as the following:

For clarity, we expand the definitions:

Examples:

Name Equality
Name equality can be expressed within the logic (Section 4.7), by setting:

Q �  a[] | b[c[]]

P � a[T] | b[T] | T P includes locations a and b
P � a[m[T]] | T there is a (message) m in a
P � ��(b[m[T]] | T) a (message) m will be found in b
P � ���c[] an empty location c will be produced

©η � ¬η®T meaning: contains the name η free

closed � ¬�x.©x
separate � ¬�x.©x | ©x
atmostfree η � closed�η

has no free names
has no shared free names
has at most η as a free name

�P
Π.
�P
Π.

P � ©n
P � closed

iff ¬�P’
Π. P � (νn)P’ iff n
fn(P)
iff �n
Λ. �P’
Π. P � (νn)P’ iff fn(P) = �

�P
Π.
�P
Π.

P � separate
P � atmostfree n

iff ¬�n
Λ. �P’,P”
Π. P � P’ | P” ∧ n
fn(P’) ∧ n
fn(P”)
iff �m
Λ. �P’
Π. (νn)P � (νm)P’ iff fn(P) ⊆ {n}

n[] � ©n because ¬�P’
Π. n[] � (νn)P’ 
(νm)m[] � closed because �n
Λ. (νm)m[] � (νn)(νm)m[]
n[] | m[] | (νp)(p[] | p[]) � separate
n[] � atmostfree n because (νn)n[] � closed
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We can check that P � n[T]@m iff m[P] � n[T] iff m = n, and this is independent of the
choice of P. As an example, the following formula means “any two top-level ambients have
different names”, which can be interpreted as a no-spoofing security property:

and we can verify that n[m[]] | m[] � top-distinct (while n[m[]] | m[] ��separate).

Hiding
Let us now consider the process:

where the ambient n[] is the only ambient contained inside a hidden location. The name of
such a hidden location cannot be mentioned, because it is bound by restriction. Nonethe-
less, suppose we want to describe formally such a property of P; we can write:

meaning that there is a name x (which in this particular example can be taken to be any
p�n), such that x�n (that is, the hidden name does not clash with the public name n), and
¬©x (the hidden name does not accidentally appear free in P), and x®x[n[T]] (P consists
of a restriction, which once opened by using x as the hidden name, reveals the structure
x[n[T]]). 

The entire formula is read as a whole as “there is a hidden name x such that x[n[T]]”
and is better motivated in Sections 6 and 7 in terms of a hidden-name quantifier. For an ex-
ample of satisfaction for hidden name quantifiers, see Section 7.3.

4  Validity
In this section, we study valid formulas, valid sequents, and valid logical inference rules.
All these are based on the satisfaction relation given in the previous section. Once the def-
inition of satisfaction is fixed, we are basically committed to whatever logic comes out of
it. Therefore, it is important to stress that the satisfaction relation appears very natural to
us. In particular, the definitions of 0, n[�], and � | � seem inevitable, once we accept that
formulas should be able to talk about the tree structure of locations, and that they should
not distinguish processes that are surely indistinguishable (up to �). The connectives �@n
and ����have natural security motivations. The modalities ���and ���talk about process
evolution and structure in an undetermined way, which is good for mobility specifications.
The rest is classical predicate logic, with the ability to quantify over location names. The
connectives ® and � are perhaps the least natural; they are discussed and motivated in Sec-
tion 5.

Through the satisfaction relation, our logic is based on solid computational intuitions.
We should now approach the task of discovering the rules of the logic without preconcep-
tions. As we shall see, what we get has familiar as well as novel aspects.

η�= µ  �  η[T]@µ

top-distinct � �x. �y. x[T] | y[T] | T � ¬ x = y

P � (νp)p[n[]]

P � �x. x�n ∧ ¬©x ∧ x®x[n[T]]
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We adopt a non-standard formulation of sequents, where each sequent has exactly one
assumption and one conclusion: ���� �. Our intention in doing so is to avoid pre-judging
the interpretation of the structural operator “,” in standard sequents. In our logic, by taking
∧ on the left and ∨ on the right of��� as structural operators (i.e., as “,”), all the standard rules
of sequent and natural deduction systems with multiple premises/conclusions can be de-
rived. Instead, by taking | on the left of��� as a structural operator, all the rules of intuition-
istic linear logic can be derived. Finally, by taking nestings of ∧ and | on the left of �� as
structural “bunches”, we obtain a bunched logic [31]. We discuss this further in Section 8.
This form of sequents contrasts with the one adopted in [5], in related work.

In the sequel, we organize our results into Validity Propositions for inference rules that
are validated in the model, and into Logical Corollaries (mostly found in the Appendix) that
are derived purely logically from the inference rules. Both primitive and derived rules are
given individual names; they are referred to by those names, not by Proposition or Corol-
lary number. Many rules have names of the form (- ��); these are entailment rules that gen-
erally relate entailment of logical connectives to entailment of their arguments. Theses are
akin to congruence rules over the syntax of logical connectives: by composing these rules
one can substitute equals for equals into formulas.

Valid Formulas, Sequents, and Rules
A closed formula is valid when it is satisfied by all processes. A general formula is valid
when it is valid under any closed instantiation of its free variables with names.

More precisely, if fv(�)={x1, ..., xk} are the free variables of � and ϕ
ϑ→Λ is a sub-
stitution of names for variables such that dom(ϕ)⊇fv(�), then we write �ϕ�for �{x1←ϕ(x1),
..., xk←ϕ(xk)}, and we define:

Valid Formulas

We use validity for interpreting logical inference rules, as described in the following
tables. We use a linearized notation for inference rules, where the usual horizontal bar sep-
arating antecedents from consequents is written ‘�’ in-line, and ‘;’ is used to separate ante-
cedents. 

Sequents are interpreted as follows. A simple sequent ���� ��is interpreted as the va-
lidity of the formula ���. Sequents with conditions about disjointness of variables, or
disjointness of variables from names, are reduced to simple sequents, as described below.
Note that, as discussed in Section 4.7, equality of names η=µ is definable in the logic as
η[T]@µ.

Sequents

vld(�)ϕ � �P
Π. P � �ϕ for ϕ
ϑ→Λ with dom(ϕ)⊇fv(�)
vld(�) � �ϕ
fv(�)→Λ. vld(�)ϕ

���� � � vld(���)
���� � (η1≠µ1, ..., ηn≠µn) � (η1≠µ1 ∧ ... ∧ ηn≠µn ∧ �)��� �
��	��� � (Ξ) � (���� � (Ξ)) ∧ (���� � (Ξ)) where Ξ = η1≠µ1, ..., ηn≠µn
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For example: ���� � means �ϕ
fv(���)→Λ. �P
Π. P � �ϕ � P � �ϕ. To be precise,
a given sequent cannot contain instances of the metavariables η and µ, but it may contain
either a name or a variable where indicated by η and µ.

Logical rules are interpreted as follows, where � are sequents (any of the three forms
above, including sequents with side conditions and double sequents):

Rules

The definition of validity for formulas with free variables allows us to handle quanti-
fication over names. We obtain the validity of the following standard rules for the universal
quantifier, and for the definable existential quantifier:

Quantification

Remark: (���� R). The distinction between variables and names in formulas, and the use of
variables (as opposed to names) in quantification is crucial for (� R). The version of (� R)
with names instead of variables: 

���� � � ���� �n.� where n ��fn(�), 
is not sound. Consider the valid sequent m[T]��� ¬n[T]. If quantification binders were
names, then the rule (� R) could be used to produce m[T]��� �n.¬n[T], which is not valid.
Since quantification binders are variables, one can only deduce m[T]��� �x.¬n[T]. �

Remark: (���� L). The use of substitutions that admit variables, in addition to names, in (�
L), is crucial. Otherwise, if (� L) is formulated as �{x←m}��� � � �x.���� �, there does
not seem to be any way to derive, for example:

���� � � �x.���� �x.�
which is obtained by starting from �{x←x}��� � and applying (� L) and then (� R). �

Remark: Scope of variables in rules. Free variables are independently quantified in each
sequent of a rule, and not across the whole rule. (This is necessary for the soundness of (�
R).) For example, the rule �1��� �1�� �0��� �0 means: (�ϕ
fv(�1��1)→Λ. vld(�1��1)ϕ)
� (�ϕ
fv(�0��0)→Λ. vld(�0��0)ϕ). Therefore, there is no actual relationship between
identical variables occurring on the left and on the right of �. �

Remark: Name and Variable form for Axioms. When an axiom (a rule without anteced-
ents) is meant to hold for both variables and names, we present it with variables, and we
rely on an instantiation principle (Proposition 4-1) to derive the form with names. Con-
versely, an axiom can be systematically lifted from name form to variable form by a tech-
nique from [13] (section 4.2.8), which introduces side conditions about disjointness of
variables. However, that technique often introduces unnecessary side conditions. �

�1; ...; �n�� �0 � (�1 ∧ ... ∧ �n) � �0

�1 �� �2 � �1 � �2 ∧  �2 � �1

(� L) �{x←η}��� � � �x.���� � where η is a name or a variable
(� R) ���� � � ���� �x.� where x ��fv(�)
(� L) ���� � � �x.���� � where x ��fv(�)
(� R) � �� �{x←η} � ���� �x.� where η is a name or a variable
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Remark: Name and Variable form for Rules. When a full rule (with antecedents) is meant
to hold for both variables and names, the situation gets subtle, particularly if related vari-
ables or names occur throughout the rule. Consider one of the rules we use later, expressed
in variable and name form; both forms are valid:

In rule (1) the two x’s are under separate ϕ quantifications, so this really means the same as
x®������ � �{x←y} ����{x←y}�y for a fresh y. Rule (1) by itself is not enough, because
(2) is not derivable from (1) by the instantiation principle, and we need (2) for deductions
that involve names. On the other hand, rule (2) by itself is not enough for deductions that
involve variables. For example, from the axiom � x®x®� ���x®� we may want to derive
x®� ���(x®�)�x by (1), and then �x. x®� ����x. (x®�)�x. This conclusion cannot be de-
rived if we do not start with variables in the first place, because otherwise we could never
use (� R). Therefore, we need both (1) and (2). A compact way to write these two rules is:

However, we should remember that this is just an abbreviation for (1) and (2). If we had
two metavariables η and µ in a rule, this would represent four rules (although we have no
need for this at the moment). �

Remark: Schematic Side Conditions. The disjointness side conditions, e.g.:
���� � (x≠y) � (x≠y ∧ �)��� �

are interpreted within the logic, and always impose restrictions on the free variables or
names of a sequent. They really express restrictions on the allowable instantiations of free
variables to names, and only indirectly on disjointness of variables. A different kind of side
condition is schematic; it can impose restrictions on bound variables, and it arises uniquely
from the side condition to the rule (� R): x ��fv(�), which talks about an actual variable,
and not about its allowable instantiations. These schematic side conditions restrict, meta-
theoretically, the legal instances of a rule, and we always prefix them by “where”. In some
cases a schematic side condition can look very similar to a disjointness side condition, and
this can be a bit confusing. For example, consider the following derivable sequent (an in-
stance of a derivable rule we later call (® �)), where y is free and x is bound:

� y®�x.x[] ����x.y®x[] where x ≠ y
To explain what this side condition means, we examine the derivation, beginning with:

�(Id) x[] ���x[]  = x[]{x←x} ���x[]
�(� L) �x.x[] ���x[]

At this point we could legally apply (® ��) using x, in the following way:
�(® ��) x®�x.x[] ���x®x[]

However, we should next apply (� R) to put �x on the right hand side, but this is now
blocked by its side condition, because x is free on the left hand side. So, instead, we are
forced to first apply (® ��) with a different variable y. The (� R) side condition x �
fv(y®�x.x[]) then reduces to the side condition x ≠ y of the rule:

(1) x®������ � � �����x
(2) n®������ � � �����n

(3) η®������ � � �����η
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�(® ��) y®�x.x[] ���y®x[]  where x ≠ y
�(� R) y®�x.� ����x.y®� where x ≠ y 

Note that, for two free variables x,y, a disjointness side condition is stronger than a sche-
matic side condition: we could have “where x ≠ y” satisfied by taking x to be literally a dif-
ferent variable from y, but they could both be instantiated to the same name n, thereby
violating a “(x ≠ y)” side condition. �

Instantiation Principle
An instantiation principle follows from the definition of validity. 

4-1  Proposition (Instantiation Principle) (Proof in the Appendix)

(1) vld(�) � vld(�{x←n})
(2) Let � be a one-directional sequent. Then: (Inst) ��� �{x←n}.
�

Substitution Principle
Let �{−} be a formula with a set of formula holes, indicated by −, and let �{�} denote the
formula obtained by filling those holes with the formula �, after renaming the bound vari-
ables of � so they do not capture free variables of �. For any mapping ϕ
ϑ→Λ, we have
�{−}ϕ = �ϕ{−} and �{�}ϕ = �ϕ{�ϕ}.

4-2  Proposition (Substitution Principle) (Proof in the Appendix)

(1) vld(�� ⇔ ��) � vld(�{��} ⇔ �{��})
(2) (Subst) ���	��� ��� � �{��}�	��� �{��}
�

Case Analysis Principle
A case analysis principle is useful for proofs involving equality and inequality; inequalities
often occur as side-conditions of primitive and derived rules.

4-3  Definition (Classical Predicates)
A predicate � is classical iff �ϕ
fv(�)→Λ. {P ��P � �ϕ} 
 {Π, �}.

�

Remark. T, F, and η=µ are classical predicates. So is �F, for any � (meaning that ��is un-
satisfiable). So is the conjunction, disjunction, and negation of classical predicates. �

4-4  Proposition (Case Analysis Principle) (Proof in the Appendix)

(1) Let � be a classical predicate. Then: vld(�{T}) ∧ vld(�{F}) � vld(�{�}).
(2) Let �{−} be a one-directional sequent with a set of formula holes, and � be a classical

predicate. Then: (Case Analysis) �{T}; �{F}� � �{�}
�
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4.1  Propositional Logic
The following is a non-standard presentation of the propositional sequent calculus [25],
based on our single-assumption single-conclusion sequents.

4-5  Proposition (Validity: Propositional Logic) (Proof in the Appendix)

(A-L) �∧(�∧�)��� � �� (�∧�)∧���� �
(A-R) ���� (�∨�)∨� �� ���� �∨(�∨�)
(X-L) �∧���� � � �∧���� �
(X-R) ���� �∨� � ���� �∨�
(C-L) �∧���� � � ���� �
(C-R) ���� �∨� � ���� �
(W-L) ���� � � �∧���� �
(W-R) ���� � � ���� �∨�
(Id) � ���� �
(Cut) ���� �∨�; ��∧���� �� � �∧����� �∨��
(T) �∧T��� � � � �� �
(F) ���� F∨� � � �� �
(¬-L) ���� �∨� � �∧¬���� �
(¬-R) �∧���� � � ���� ¬�∨�
�

Remark (Propositional Logic). The standard deduction rules of propositional logic, both
for the sequent calculus and for natural deduction, are derivable from the rules of Proposi-
tion 4-5. As usual, � � ��can be defined as ¬�∨�. �

4.2  Composition
The composition rules apply to our Ambient Calculus but also, for example, to CCS.

4-6  Proposition (Validity: Composition Rules)
( | 0) � � | 0 	��� � 0 is nothing
( | ¬0) � � | ¬0 �� ¬0 if a part is non-0, so is the whole
(A | ) � � | (� | �) 	��� (� | �) | � | associativity
(X | ) � � | � �� � | � | commutativity
( | ��) ����� ��; ����� �� � �� | �� �� �� | �� | congruence
( | ∨) � (�∨�) | � �� � | ��∨ � | � |-∨ distribution
( | �) � | ���� � �� ���� ��� |-� adjunction
( | || ) � �� | �� ∧ �� || ����� �� | ���∨ �� | �� decomposition
�

The converse of |-∨ distribution, � | ��∨ � | � �� (�∨�) | �, is derivable, and so is a |-
∧ distribution rule, (�∧�) | � �� � | ��∧ � | �. However, the converse of that, namely � |
��∧ � | � �� (�∧�) | �, is not sound. (Take � = n[m[T]], � = n[p[T]], � = n[T], and P =
n[m[]] | n[p[]]; then P � � | � and P � � | �, but ¬ P � (�∧�) | �.) As a consequence, one
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cannot always “push | inside ∧” on the left-hand side of a sequent. In particular, after an
application of ( | ��) one cannot in general renormalize a sequent to bring ∧’s to the top level.

The decomposition axiom, ( | || ), can be used to analyze a composition �� | �� with
respect to arbitrarily chosen ���and ��. An easy consequence of it is ¬(� | �) �� (� | T) �
(T | ¬�), which means that if a process cannot be decomposed into parts that satisfy � and
�, but can be decomposed in such a way that a part satisfies �, then it can also be decom-
posed in such a way that a part does not satisfy �. An even simpler consequence is that ¬(T
| �) �� T | ¬�, which is one of the few cases in which one can push ¬ across |.

The rule ( | || ) is particularly intriguing. In the form:
� �� | �� �� �� | ���∨ �� | ���∨ ¬�� | ¬��

it can be used to analyze a composition �� | �� with respect to arbitrarily chosen ���and ��.
The rule ( | ¬), given in the Logical Corollaries 10-2, is a simple consequence of this, while
the rule ( |-E), again given in the next Logical Corollaries 10-2, is an elimination-style for-
mulation of ( | || ).

The rule ( | �) states that ����and � | � are adjuncts. This has a large number of in-
teresting consequences, most of them deriving from the adjunction along standard lines
(see the Appendix).

It is worth pointing out that some composition rules produce interesting interactions
between the ∧ and | fragments of the logic. For example, (� | �) ∧ 0 �� ��is derivable using
( | || ) and ( | ¬0).

Axiom naming conventions.  This is not a strict rule, but very often axioms are named by
a sequence of connectives corresponding to a top-down path through the formula on the
left-hand side of the sequent. Occasionally, different but closely related rules have the same
name: this is intentional and causes little ambiguity.

4.3  Locations
The location rules are very specific to the Ambient Calculus.

4-7  Proposition (Validity: Location Rules)
(n[]�¬0) � x[�]��� ¬0 locations exist
(n[]�¬ | ) � x[�]��� ¬(¬0 | ¬0) locations are not decomposable
(n[]���) ���� � �� x[�]��� x[�] n[] congruence
(n[] ∧) � x[�]∧x[�]��� x[�∧�] n[]-∧ distribution
(n[] ∨) � x[�∨�] �� x[�]∨x[�] n[]-∨ distribution
(n[] @) x[�]��� � �� ���� �@x n[]-@ adjunction
(¬ @) � �@x�	��� ¬((¬�)@x) @ is self-dual
�

The rule (n[] @) states that �@n and n[�] are adjuncts. Note that (n[]���) holds in both
directions, and that the inverse directions of (n[] ∧) and (n[] ∨) are derivable; hence, the
location fragment of the logic is particularly simple to handle. Some consequences are:
x[�@x]��� �, and ��	��� x[�]@x, and ¬x[�]�	��� ¬x[T] ∨ x[¬�].
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4.4  Time and Space Modalities
Both modal operators, ��and �, obey the rules of S4 modalities; these follow simply from
reflexivity and transitivity of 	

�* and �*. 

4-8  Proposition (Validity: � ,� and �,� are Modal S4)
(�) � �� 	��� ¬�¬� (�) � �� 	��� ¬�¬�
(� K) � �(� � �) �� �� � �� (� K) � �(� � �) �� �� � ��

(� T) � �� �� � (� T) � �� �� �
(� 4) � �� �� ��� (� 4) � �� �� ���
(� T) � T �� �T (� T) � T �� �T
(� ��) ���� � � ����� �� (� ��) ���� � � ����� ��
�

However, these operators are not S5 modalities:
¬ vld(�� � ���)
¬ vld(�� � ���)

Namely: If � may happen along some execution branch, it is not necessarily true that it may
happen starting from every execution sub-branch. If � holds in some sublocation, it is not
necessarily true that it holds in some sublocation of every sublocation.

The two modalities permute in one direction (somewhere sometime implies sometime
somewhere), but the other direction is not sound. (Consider P = (open n. m[p[]]) | n[]. Then
P ����p[0], but P ����p[0]). The modalities differ prominently in the way they distribute
over compositions and locations.

4-9  Proposition (Validity: Other Properties of Modalities)
(��) � ��� �� ���

(� n[]) � n[��]��� �n[�]
(� | ) � �� | ����� �(� | �)
(� n[]) � n[��]��� ��

(� | ) � �� | ���� �(� | T)
�

4.5  Satisfiability
Validity and satisfiability can be reflected into the logic by means of the �F�operator (here
we use �¬ for ¬�):

From the definitions of ��and F, we obtain that P � �F ⇔ (�P’:Π. P’ � � � P|P’ � F) ⇔
(�P’:Π. ¬P’ � �), i.e., iff ��is unsatisfiable independently of P.

One of the main properties of �F is that � | �F �� F, by (��| ). That is, ��cannot be both

�F � ��F
Vld � �  �¬F

Sat � �  �F¬

P � �F� iff �P’:Π. ¬P’ � �
P � Vld �� iff �P’:Π. P’ � �
P � Sat �� iff �P’:Π. P’ � �

� is unsatisfiable
� is valid
� is satisfiable
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satisfiable and unsatisfiable. In addition we obtain, from the model, the following rules,
from which it is possible to show within the logic that Vld and Sat obey the rules of S5 mod-
al operators (see Logical Corollaries 10-10).

4-10  Proposition (Validity: Satisfiability Rules)
(�F ¬) � �F �� �¬

(¬ �F) � �F¬ �� �FF

�

Note: �¬F �� �F¬ is derivable, while �F¬ �� �¬F and �¬ �� �F are not valid.

4.6  Quantifiers
4-11  Proposition (Validity: Quantifiers)
(�-L) �{x←η}��� � � �x.���� � where η is a name or a variable
(�-R) ���� � � ���� �x.� where x ��fv(�)
�

As an example, ��x.¬(x[T]�) is the formula for “somewhere there are no ambients”.
Since there are no infinite spatial paths P1 � P2 � P3 � ..., we can show in the model that
this formula is valid. On the other hand, its temporal dual, “sometime there are no ambi-
ents”, ��x.¬(x[T]�), is invalid; for instance, it is not satisfied by n[].

For future reference (Corollary 6-6, (� | )):
Note that (�x.�)�	(�x.�)��� �x.(��	�) does not hold.

Ex.: n[] | m[m[]] ��(�x.x[])�	(�x.x[x[]]) but n[] | m[m[]] ���x.(x[]�	x[x[]]). 
Note that �x.(��	�)��� (�x.�)�	(�x.�) does not hold.

Ex.: n[] | m[] ���x. (x=n � n[])∧(x=m � m[])�	�(x=n � m[])∧(x=m � n[])
but n[] | m[] ��(�x.(x=n � n[])∧(x=m � m[]))�	�(�x.(x=n � m[])∧(x=m � n[]))

4.7  Name Equality
It is possible to encode name equality within the logic in terms of location adjuncts.

Encoding Name Equality

4-12  Proposition (Name Equality)
�ϕ
fv(η,µ)→Λ. �P:Π. (P � (η�= µ)ϕ  ⇔  ϕ(η) = ϕ(µ))

Proof
If ϕ(η) = ϕ(µ), then ϕ(µ)[P] � ϕ(η)[T], that is P � ϕ(η)[T]@ϕ(µ), or P � (η[T]@µ)ϕ,
or P � (η�= µ)ϕ.

η�= µ �  η[T]@µ
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Conversely, assume that P � (η�= µ)ϕ, that is P � ϕ(η)[T]@ϕ(µ). By definition of sat-
isfaction, P � ϕ(η)[T]@ϕ(µ) iff ϕ(µ)[P] � ϕ(η)[T] iff �P’:Π. ϕ(µ)[P] � ϕ(η)[P’]. But
ϕ(µ)[P] � ϕ(η)[P’], by Lemmas 2-1, implies ϕ(µ) = ϕ(η).

�

In order to prove statements involving name equality, it is often useful to reason by
cases on equality or inequality, using the case analysis principle.

Example:
η=µ | � ��� η=µ

by case analysis, T | � ���T by (�T), and F | � ���F by ( | F).
Example:

(η=µ ∧ �) | � 	���� η=µ ∧ (� | �)
by case analysis: 

(T∧�) | � 	���� � | � 	���� T ∧ (� | �); 
(F∧�) | � 	���� F | � 	���� F 	���� F ∧ (� | �).

4.8  Logical Properties of Type Systems
The logic can be used to express properties guaranteed by type systems. 

Consider the system of locking and mobility types for the Ambient Calculus [10], re-
cast for the calculus of this paper. The assumption p:Amb•[S] ensures that ambients named
p cannot be dissolved by an open. We can prove that if E, p:Amb•[S], E’��� P : T, then P �
�(�(p[T]�) � ��(p[T]�)). This expresses that in a well-typed process, once an ambient
named p somewhere comes into being, ever after there will somewhere be an ambient
named p.

Moreover, the assumption q:Amb•[�S’] ensures that ambients named q cannot be
moved by in or out capabilities, nor dissolved by an open. We can prove that if E,
p:Amb•[S], q:Amb•[�S’], E’��� P : T, then P � �(�(p[q[T]�]�) � ��(p[q[T]�]�)). This ex-
presses that in a well-typed process, once an ambient named q is somewhere a child of p,
ever after there will somewhere be a q child of p.

4.9  Example Derivations
In this section we give examples of derivations that have some intuitive meaning and that
can be carried out within the logic. We keep the derivations semi-formal. Some of the rules
mentioned below are derived, and can be found in the Appendix.

Shopper and Thief
We use the laws of �, | , and �, to analyze the consequences of composing two logical spec-
ifications. The specifications describe two subsystems: a Shopper and a Thief, and focus on
what happens to the shopper’s wallet. The wallet is described simply by the formula Wal-
let[T], leaving the contents of the wallet unspecified. The absence of a wallet in a given lo-
cation is described by the formula NoWallet, defined as ¬(Wallet[T] | T), meaning that it
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is not possible to decompose the current location into a part containing a wallet and some
other part. 

A thief is somebody who, in the direct presence of a wallet, can make the wallet dis-
appear. Its specification is Wallet[T] ���NoWallet, and its implementation in the Ambient
Calculus could simply be given by open Wallet.

A shopper is, initially, a person with a wallet (a Looker) who is later likely to become
a Buyer. A buyer is a person who has pulled out the wallet, presumably to buy something.
When a wallet has been pulled out, it becomes vulnerable to a nearby thief.

In the following derivation, we show that the interaction of a shopper with a thief (pos-
sibly in some larger context) may result in a CrimeScene, which is a situation in which the
shopper has no wallet, and also there is no wallet to be found nearby.

We begin with the system Buyer | Thief; using the rules (�| �) and (�| ��) we obtain:

From the rules (�T) � �������, (Id), and (�| ��) we obtain, in general, ��| (��)����(��)�|
(��). Then, by (� | ) � (��) | (��)��� �(� | �) and transitivity (derivable from (Cut))
we obtain ��| (��)�����(��| �). Using this fact in our example we obtain, by transitivity:

Using the rules (����) �������� ��������, and (��4) � ���������, we derive:

As before, we can derive (��)�| ������(��| �); therefore:

and, by transitivity from above:

then, by weakening (W-L):

Now let’s consider the system Shopper | Thief. By the distribution of | over ∧
( | ∧) � (�∧�) | � �� � | ��∧ � | �), we have:

NoWallet � ¬(Wallet[T] | T)
Looker � Person[Wallet[T] | T]
Buyer � Person[NoWallet] | Wallet[T]
Shopper � Looker ∧ �Buyer
Thief � Wallet[T] ���NoWallet
CrimeScene � Person[NoWallet] | NoWallet

Buyer | Thief 
= Person[NoWallet] | Wallet[T] | (Wallet[T] ���NoWallet)
�� Person[NoWallet] | �NoWallet

Buyer | Thief ����(Person[NoWallet]�| NoWallet) 
= �CrimeScene

�(Buyer | Thief) �����CrimeScene
��CrimeScene ����CrimeScene

(�Buyer) | Thief ����(Buyer | Thief)

(�Buyer) | Thief ����CrimeScene

(Looker | Thief) ∧ ((�Buyer) | Thief) ����CrimeScene
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and finally, by transitivity from above, we obtain:

Irresistible Force
In the next example, we consider the derivation of a logical paradox, showing that a given
specification is not implementable. This is the situation of an immovable object meeting an
irresistible force. We say a process contains an immovable object obj[] if in the presence of
any other process, the object will always exist; this is the Im property. We say a process is
irresistible (with respect to obj[]) if it will make any obj[] placed next to it eventually dis-
appear; this is the Ir property. The pattern T�� is used to say that “in any context” � holds.

We consider what happens when we place an immovable object next to an irresistible
force; this is done by a spatial composition Im | Ir (as opposed to, e.g., a conjunction of
specifications).

We consider Im | Ir, and we first expand the definition of Im, and lift Ir to T (by � �� T and
congruence). Then we apply (�| �), and a trivial property of �.

We start again with Im | Ir, and we now expand the definition of Ir, and lift Im to T. Then
we apply again (�| �), and commute temporal modalities with negation.

We have now reached opposite conclusions from the same premise, and we can derive a
contradiction:

This shows that a system satisfying Im | Ir cannot be implemented. Therefore, without
considering any particular process, we know that either Im or Ir are not implementable in
Ambient Calculus. In fact, Im is implementable by !obj[], therefore Ir must be unimple-
mentable.

See Section 7.3 for a simple derivation involving revelation and the hiding quantifier.

Shopper | Thief = (Looker ∧ �Buyer) | Thief
�� (Looker | Thief) ∧ ((�Buyer) | Thief)

Shopper | Thief ����CrimeScene

Im � T � �(obj[] | T) in any context, there will always be an obj[]
Ir � T � ��¬(obj[] | T) in any context, obj[] will disappear

Im | Ir �� (T � �(obj[] | T)) | T because � �� T
�� �(obj[] | T) because (���) | ���� �
�� ��(obj[] | T) because � �� ��

Im | Ir �� T | (T � ��¬(obj[] | T)) because � �� T
�� ��¬(obj[] | T) because (���) | ���� �
�� ¬��(obj[] | T) because �¬� �� ¬�� etc.

Hence: Im | Ir �� F because � ∧ ¬� �� F
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5  Revelation
We now study the logical connectives η®� (revelation), and ��η (revelation adjunct or
hiding). These connectives make assertions about restricted names that occur at the process
level.

5.1  Satisfaction
The formula η®� is used to reveal a restricted name; it is read “reveal η then �”, where η
is either a name (n) or the occurrence of a variable (x) that denotes a name. A process P
satisfies the formula n®� if it is possible to pull a restricted name occurring in P to the top
and rename it n, and then strip off the restriction to leave a residual process that satisfies �. 

We cannot rename a top-level restricted name of P to n if n is already free in P. There-
fore, a revelation formula provides a way of testing for the free names of the underlying
process P, as we discuss below.

The inverse (technically, the adjunct) of revelation is called hiding: ��η, which is
read “hide η then �”. A process P satisfies the formula ��n if (νn)P satisfies �, that is, if
it is possible to hide n in P and then satisfy �. The satisfaction relation P � ��for revelation
and hiding is repeated below:

Satisfaction for Revelation and Hiding

Here are some simple examples: 

Revelation gives us a way to talk about the free (or “known”) names of a process. This
can be embodied in a derived operator ©n, satisfied by a process P iff n
fn(P). This and
other derived connectives have been already discussed in Section 3.3.

5.2  Rules
Before giving our set of primitive rules of revelation and hiding, we discuss the most inter-
esting properties of ® and � that are derived in this section. In order to emphasize some
symmetries, we use here a combination of primitive and derived rules, 

First, the cancellation and swapping properties of double restriction, (νn)(νn)P �
(νn)P and (νn)(νm)P � (νm)(νn)P, are inherited by both ® and �:

P � n®�� � �P’
Π. P � (νn)P’ ∧ P’ � �
P � ��n� � (νn)P � �

(νn)n[] � n®T because n[] � T
0 � n®T because 0 � (νn)0 and 0 � T
¬ n[] � n®T because there is no process (νn)P’ � n[]
(νm)m[] � n®n[] because (νm)m[] � (νn)n[] and n[] � n[]
m[] � (n®n[])�m because (νm)m[] � n®n[]
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Next, consider the combinations: 

We see easily that P � n®(��n) means that P � � and that n�fn(P), where n�fn(P) can be
written also as P � n®T. Instead, P � (n®�)�n means that, although P may not satisfy �,
if we hide n in P we obtain something where we can reveal n and satisfy �. For example,
(νm)n[m[]] ��m®m[n[]], but (νm)n[m[]] � (n®m®m[n[]])�n, because (νn)(νm)n[m[]] �
(νn)(νm)m[n[]] � n®m®m[n[]]. In other words, P � (n®�)�n means that we can satisfy
� by hiding the name n of P, and revealing a possibly different restricted name of P as n.
We obtain the properties:

The interactions of ® and � with | are the most interesting, and the most complex.
There are basically three distribution rules: distribution of ® over | in both directions (with
a constraint), unrestricted distribution of � over | in one direction, and distribution of
n®((−)�n) over | in both directions.

The first rule embodies the scope extrusion rule, (νn)(P | Q) � ((νn)P) | Q if n�fn(Q).
This can be seen more clearly if we note that the side condition n�fn(Q) is equivalent to Q
� (νn)Q; then the extrusion rule can be written as (νn)(P | (νn)Q) � ((νn)P) | ((νn)Q) with
no side condition.

The second rule implies that if (νn)(P | Q) � � | � then it is possible to distribute the
restriction so that (νn)P � � and (νn)Q � �; this is a consequence of Lemma 2-1(9).

The last rule looks mysterious, but has a simple interpretation. According to one of the
equivalences above, it can be rewritten as (� | �) ∧ n®T 	����(� ∧ n®T) | (� ∧ n®T); that
is, the name n does not occur in a parallel composition iff it does not occur in either com-
ponent. The right-to-left direction is actually a derivable rule.

A similar set of rules holds for distribution of ® and � over n[−]:

n®n®��	����n®�
��n�n�	������n
n®m®�����m®n®�
��m�n������n�m

n®(��n)
(n®�)�n

n®(��n)�	����� ∧ n®T

n®(��n)����� �����(n®�)�n
n®(��n)������n ��n����(n®�)�n
n®(��n)����n®� n®�����(n®�)�n

n®(� | n®�)�	����n®� | n®�

(� | �)�n �����n | ��n
n®((� | �)�n) 	����n®(��n) | n®(��n)
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The distribution of n®− over m[−] (first rule) holds in both directions as long as n ≠ m.
The distribution of −�n over m[−] (second and third rules) comes in two cases, de-

pending on whether n=m. In each case, the right-to-left direction is derivable. From
n[T]�n ���F we can derive n®T����¬n[T], which means that if a name n does not occur free
in a process, the process cannot be a location named n.

The distribution of n®((−)�n) over m[−] (fourth rule) is derivable in both directions,
from the first two rules. Again, this rule can be rewritten as m[�] ∧ n®T 	����m[� ∧ n®T]
(n ≠ m); that is, the name n does not occur in a location iff it is distinct from the name of
the location and it does not occur inside the location. 

Finally, ® and � commute in one direction:

We now take the following set of rules as primitive, and we verify their validity in the
model. The first group handles double revelation, distribution of ® over ∨, congruence of
® with ��, the adjunction rule connecting ® and �, and the rather curious but very useful
fact that ¬ commutes with �. The next three groups deal with the interactions of ® and �
with 0, |, and n[−].

5-1  Proposition (Validity: Revelation Rules)
(®) � x®x®� 	����x®�
(® ®) � x®y®� ���y®x®�
(® ∨) � x®(��∨ �) ���x®��∨ x®�

(® ��) ������ � x®� ���x®�
(® �) η®������ �� � �����η
(� ¬) � (¬�)�x�	��� ¬(��x)
(� �F) � �F

�x 	����F

(® 0) � x®0 	����0
(� 0) � 0�x ���0

(® | ) � x®(� | x®�)�	����x®� | x®�

(� | ) � (� | �)�x �����x | ��x
(® � | ) � x®((� | �)�x) ���x®(��x) | x®(��x)

(® n[]) � x®y[�] 	����y[x®�] (x ≠ y)
(� n[]) � y[�]�x ���y[��x] (x ≠ y)
(� n[]) � x[�]�x ���F
�

n®m[�] 	����m[n®�] (n ≠ m)
m[�]�n 	����m[��n] (n ≠ m)
n[�]�n 	����F
n®(m[�]�n) 	����m[n®(��n)] (n ≠ m)

m®(��n) ���(m®�)�n
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Remark. The converse of (� | ) fails. Consider ��n | ��n ���(� | �)�n. We have n[] |
n[] � (n®n[])�n | (n®n[])�n, but n[] | n[] � (n®n[] | n®n[])�n. �

Remark. n®�� ∧ n®� ��� n®(�� ∧ �) fails (the converse is derivable). We have
(νn)(νn’)n[n’[]] � n®(n’®n[n’[0]])� ∧ n®(n’®n’[n[0]]), but (νn)(νn’)n[n’[]] �
n®(n’®n[n’[0]]�∧ n’®n’[n[0]]). �

Remark. n®� | n®��	����n®(� | �) fails in both directions. We have (νn)(n[] | n[]) �
n®(n[] | n[]), but (νn)(n[] | n[]) � n®n[] | n®n[]. We have (νn)n[] | (νn)n[] � n®n[] | n®n[],
but (νn)n[] | (νn)n[] � n®(n[] | n[]). �

Remark. � (x®�)�y ���x®(��y) (x ≠ y) fails. (The converse is derivable without side
condition: see (� ® ≠) below). For m ≠ n, we have (νm)m[] � n®n[]; therefore m[] �
(n®n[])�m. If the rule holds, we then obtain m[] � n®(n[]�m). This means that �P’
Π.
m[] � (νn)P’ ∧ P’ � n[]�m; that is, (νn)P’ � n[], that is �P”
Π. (νn)P’ � n[P”] ∧ P” �
0, that is (νn)P’ � n[]. Then, from m[] � (νn)P’ and (νn)P’ � n[] we obtain m[] � n[]: con-
tradiction. �

Remark. The converse of (� 0), namely 0 ���0�x, is derivable from (® 0). �

Remark. Note that n[�]�n ���F is the same as n[T]��� ¬n®T, i.e. if n occurs free then it
cannot be revealed. �

From the rules that we have validated in Proposition 5-1, we can derive a large collec-
tion of facts by logical deduction, including the ones in Logical Corollaries 10-12.

5.3  Hidden-Name Quantifier: First Attempts
The notion of quantifying over a hidden name is surprising subtle. We begin by discussing
some attempts that do not work out, and some criteria that such a quantifier should obey.

An Attempt with Bound Names
A hidden-name quantifier should be a construct of the logic that allows us to talk about re-
stricted names in processes. The simplest definition that comes to mind is the following for
the hidden-name quantifier Hn.�:

The α-conversion property says that n is a bound name in Hn.�. The definition of satisfac-
tion for Hn.� is identical to n®�, except for the fact that n is bound.

Unfortunately, there is a problem. Start with the valid assertion p[] � ¬n[]. From the
definition above we obtain that (νn)p[] � Hn.¬n[]. By α-conversion we have that Hn.¬n[]
= Hp.¬p[]. So, we would expect that (νn)p[] � Hp.¬p[]. However, this fails, because it is
not possible to find a P’ such that (νn)p[] � (νp)P’, by Lemma 2-1(1).

Therefore, α-conversion of Hn.��is not a valid equivalence in the logic, which basical-
ly contradicts the notion that n is a bound name in Hn.�.

Moreover, it does not seem possible to simply accept the fact that α-conversion for
Hn.� is not valid. Consider a formula such as �x.Hn.¬n[x[]]. Because of the standard rules

Hn.� �= Hm.�{n←m} if m�fn(�) (α-conversion)
P � Hn.� iff �P’
Π. P � (νn)P’ ∧ P’ � � (satisfaction)
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for universal quantification, it is possible to instantiate x with the name n. To avoid a name
capture, we would have to α-convert Hn.¬n[x[]] to Hn’.¬n’[x[]]. But if α-conversion is not
generally valid for Hn.�, then universal instantiation is also not generally valid. 

The basic problem here seems to be the notion of binding names in formulas, so we
look next for hidden-name quantifiers that bind variables.

A Discriminating Property
We might now try to define a formula Hx.� to mean, informally, that “for hidden name x”
(hidden in the underlying process), � holds. The intention is that there should be some cor-
respondence between the binder Hx in the formula, and a binder (νn) in a process that sat-
isfies the formula. There are several plausible definitions. To discriminate between them,
we are going to require the following property, (νx-proper), for any candidate definition of
Hx.�:

5-2  Property (νx-proper)
For all n
Λ, x
ϑ, P
Π, and closed �
Φ:

n�fn(P) ∧ P ��Hx.(�{n←x}) ⇔ �P’
Π. P � (νn)P’ ∧ P’ � �.

Corollary: P’ � � � (νn)P’ ��Hx.(�{n←x}).
�

This property can be rewritten in logical form as n®T ∧ Hx.(�{n←x})�	��� n®�, for all n.
Assuming (νx-proper) holds, we can already obtain, for example:

Remark. It is natural to first consider the simpler discriminating property:

The ⇐ direction is equivalent to (νx-proper⇐). However, the � direction is inconsistent
with the fundamental Lemma 3-1. Start with n[] ��n[]. By (νx-1⇐) we obtain (νn)n[] �
Hx.x[]. Since (νn)n[] � (νn)(νn)n[], by Lemma 3-1 we obtain that (νn)(νn)n[] ��Hx.x[].
Then, by (νx-1�) we obtain (νn)n[] ��n[], that is (νn)n[] ��n[], which is contradictory by
Lemma 2-1(1). The problem here is that we cannot expect a Hx in the formula to match any
(νn) in the process, but only an appropriate one. Hence the refined statement of (νx-proper).
�

An Attempt with Existentials
As our first candidate for Hx.�, it may seem natural to use the following definition: there
exists a name x that can be revealed and such that � is then satisfied: 

If there exists an m such that the underlying process satisfies m®�, then m is not free in the
process, that is, it is fresh. This matches the idea that x should denote a fresh name.

We obtain, directly from the definitions:

n[] ��n[]  � (νn)n[] ��Hx.x[]
p[] ��p[]  � (νn)p[] ��Hx.p[]

(νn)P’ ��Hx.(�{n←x})  ⇔  P’ � � (νx-1)

Hx.�� � �x.x®�
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We can verify that property (νx-proper⇐) is satisfied. For any n, start with �P’
Π. P
� (νn)P’ ∧ P’ � �, then n�fn(P) by Lemma 2-1(1). By definition of revelation we then have
that P ��n®�. Since ��is closed, this is the same as P ��(x®�{n←x}){x←n}. We have
shown that �n. P ��(x®�{n←x}){x←n}. By definition of existential quantification this
means that P ���x. x®�{n←x}, that is P ��Hx.�{n←x}. 

Unfortunately, there is a serious mismatch between this definition of the hidden-name
quantifier and our intuitions, because we also obtain:

This assertion holds because we can choose m = p and P’ = p[] (where p is the name that
happens to be free in the formula). Instead, if m is taken to be any other name, then the as-
sertion always fails. So, although p is “fresh” with respect to the process, we cannot equiv-
alently take any other fresh name (with respect to the process) in order to satisfy the
formula. This property seems to contradict the concept of “freshness”: the assertion holds
essentially because of a name clash, and should be intuitively undesirable. 

More cogently, this example shows that the property (νx-proper�) fails. We have that
(νn)n[] ��Hx.p[]{n←x}, with n�fn((νn)n[]), so we should show that �P’
Π. (νn)n[] �
(νn)P’ ∧ P’ � p[]. Now, P’ � p[] implies, by definition of � and of structural congruence,
that P’ � p[]. Thus, by Lemma 2-1(1), fn(P’) = {p} and fn((νn)P’) = {p}. However,
fn((νn)n[]) = �. Hence, (νn)n[] � (νn)P’ is impossible, by Lemma 2-1(1).

In conclusion, the existential definition of the hidden-name quantifier satisfies (νx-
proper⇐), but violates (νx-proper�) because of clashes with free names in formulas.

An Attempt with Universals
Because of the problems with existentials, it may seem better to adopt a universal defini-
tion, so as to rule out accidental satisfactions due to the existence of particular names:

We obtain, directly from the definitions:

As a sanity check, we obtain the expected (νn)n[] ��Hx.x[], because for any m there
exists a P’ = m[] such that (νn)n[] � (νm)P’ and P’ � x[]{x←m}. 

Moreover, this time (νn)n[] ��Hx.p[], because if we choose m ≠ p then we should show
that there exists a P’ such that (νn)n[] � (νm)P’ and P’ � p[]. But P’ � p[] implies that P’
� p[], and then we would have (νn)n[] � (νm)p[], which is impossible (Lemma 2-1(1)).

In fact, we find that (νx-proper�) is satisfied in general. Assume n�fn(P) and P �
�x.x®(�{n←x}), that is �m
Λ. �P’
Π. P � (νm)P’ ∧ P’ � �{n←x}{x←m}. Then, for m
= n, we obtain in particular that �P’
Π. P � (νn)P’ ∧ P’ � �.

Unfortunately, this time property (νx-proper⇐)�fails. Consider the valid assertion p[]
� ¬n[] with n ≠ p; by (νx-proper⇐)�we would obtain that (νn)p[] � �x.x®¬x[]. This means

P ��Hx.� iff �m
Λ. �P’
Π. P � (νm)P’ ∧ P’ � �{x←m}

(νn)n[] ��Hx.p[] with n ≠ p
which means: �m
Λ. �P’
Π. (νn)n[] � (νm)P’ ∧ P’ � p[]

Hx.�� � �x.x®�

P ��Hx.� iff �m
Λ. �P’
Π. P � (νm)P’ ∧ P’ � �{x←m}
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that �m
Λ. �P’
Π. (νn)p[] � (νm)P’ ∧ P’ � ¬m[]. In particular, for m = p, we obtain
�P’
Π. (νn)p[] � (νp)P’ ∧ P’ � ¬p[]. But (νn)p[] � (νp)P’ is impossible by Lemma 2-1(1).

In conclusion, the universal definition of the hidden-name quantifier satisfies (νx-
proper�), but violates (νx-proper⇐) because of clashes with free names in processes.

Two Attempt with Fresh Names
A more refined attempt, then, might involve ruling out the names that are free in the for-
mula and the processes, so that we avoid the problems above. For the simple case where
Hx.��is closed, we would have:

This is in fact what we will come to eventually (suitably generalizing to open formulas). It
can be read as “there exists a fresh name x (distinct from the free names of ��and the free
names of the underlying process) such that a restricted process name can be revealed as x,
and then � can be satisfied”. This definition will satisfy (νx-proper).

However, there is another plausible definition:

which can be read “for every fresh name x (distinct from the free names of ��and the free
names of the underlying process), a restricted process name can be revealed as x, and then
� can be satisfied”.

These two definitions will turn out to be equivalent (Logical Corollaries 10-14). The
equivalence of the existential and universal definitions is at the essence of the notion of
“freshness” [23]. Before coming back to Hx.�, we study freshness in the next section, in-
dependently of revelation.

6  Fresh-Name Quantifier
In this section we define a formula, �x.�, with the meaning “for fresh x, � holds”. Here,
“fresh” means, informally, distinct from any name that might clash with an existing name. 

The set of free (i.e., non-fresh) names that occur in a process or formula is always fi-
nite; hence sets of fresh names are always cofinite1. If there is a suitable fresh x, then there
are infinitely many of them, since a fresh name can be replaced by any other fresh name.
Therefore, “freshness” can be expressed formally as the existence of a cofinite set of inter-
changeable names [23].

We use Fin(S) for the collection of finite subsets of a set S, and (rarely) CoFin(S) for
the collection of cofinite subsets of S.

Hx.�� � �x. x�n1 ∧ ... ∧ x�nk ∧ x®T ∧ x®�
where {n1, ..., nk} = fn(�)

Hx.�� � �x. (x�n1 ∧ ... ∧ x�nk ∧ x®T) � x®�
where {n1, ..., nk} = fn(�)

1. A cofinite set is the complement of a finite set with respect to an infinite universe, which, in 
our case, is the countable universe of names Λ.
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6.1  The Gabbay-Pitts Property
We would like to obtain the following property for �x.�:

That is, P � �x.��iff there exists a fresh name m such that P � �{x←m}.
This definition is given by existential quantification over fresh names. Remarkably,

there is an equivalent definition based on universal quantification. The equivalence of these
two definitions is based on a deep property of the logic (Lemma 3-3), and will be used to
great effect later. We state the equivalence as follows: there exists a fresh name m such that
P � �{x←m}, if and only if for all fresh names m we have P � �{x←m}:

6-1  Proposition (Gabbay-Pitts Property)
�P
Π, �
Φ, N
Fin(Λ). 

N ⊇ fn(P,�) ∧ fv(�) ⊆ {x} �
(�m
Λ. m�N ∧ P � �{x←m}) ⇔ (�m
Λ. m�N � P � �{x←m})

Proof
Assume N ⊇ fn(P,�) and fv(�) ⊆ {x}.

Case ⇐) Assume �m
Λ. m�N � P � �{x←m}. Since N is finite and Λ is infinite, there
is a p
Λ such that p�N. Then, by assumption, P � �{x←p}. We have shown (�p
Λ.
p�N ∧ P � �{x←p}).

Case �) Assume �m
Λ. m�N ∧ P � �{x←m}; in particular, m�fn(P,�). Take any p
Λ
and assume p�N. If p=m we have by assumption that P � �{x← p}. Otherwise, if p≠m
then p�N∪{m}; since fn(P,�{x←m}) ⊆ N∪{m}, we have that p�fn(P,�{x←m}). By
applying Lemma 3-3 to the assumption P � �{x←m} we obtain P{m←p} �
�{x←m}{m←p}; that is, P � �{x←p}. In both cases, we have shown that (�p
Λ.
p�N � P � �{x←p}).

�

The following corollary gives consequences and alternative formulations of the Gab-
bay-Pitts property in terms of finite sets of names that include fn(P,�) (or, alternatively, in
terms of cofinite sets of names that do not intersect fn(P,�)).

6-2  Corollary (Proof in the Appendix)

Assume P
Π, �
Φ, fv(�) ⊆ {x}. Then,
�m
Λ. m� fn(P,�) ∧ P � �{x←m}

(1) ⇔ �N
Fin(Λ). N ⊇ fn(P,�) ∧ �m
Λ. m�N ∧ P � �{x←m}
(2) ⇔ �N
Fin(Λ). N ⊇ fn(P,�) ∧ �m
Λ. m�N � P � �{x←m}
(3) ⇔ �N
Fin(Λ). N ⊇ fn(P,�) � �m
Λ. m�N ∧ P � �{x←m}
(4) ⇔ �N
Fin(Λ). N ⊇ fn(P,�) � �m
Λ. m�N � P � �{x←m}
�

P � �x.� ⇔ �m
Λ. m�fn(P,�) ∧ P � �{x←m}
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6.2  A Gabbay-Pitts Logical Rule
We now want to formulate a Gabbay-Pitts property similar to Proposition 6-1, but express-
ible within the logic. We are going to use extensively the idiom x#N ∧ x®T, for a quantified
variable x. The first part of this conjunction says that the name x is fresh with respect to a
given set of names N that usually includes the set of free names of a formula of interest. The
second part says that x is fresh in the “underlying process”, because P � n®T iff n�fn(P).
For a suitable choice of N, the whole conjunction can be understood as saying that x is
“completely fresh”, both at the formula and process level, in a given situation.

Notation

With this understanding, the following proposition states the single rule (schema) that
we add to our logic in order to capture “freshness”, and establishes its soundness. Note that
this rule holds for open formulas.

6-3  Proposition (Validity: Gabbay-Pitts)
(GP)� �x. x#N ∧ x®T ∧ ��	��� �x. (x#N ∧ x®T) � �
where N
Fin(Λ∪ϑ) and N ⊇ fnv(�)-{x} and x�N

Proof
Assume N ⊇ fnv(�)-{x} and x�N. We need to show that the sequent is valid, that is
that �ϕ
(fv(�)-{x})→Λ, P
Π. P � (�x. x#N ∧ x®T ∧ �)ϕ ⇔ P � (�x. x#N ∧ x®T �
�)ϕ.

(1) � �x. x#N ∧ x®T ∧ ���� �x. x#N ∧ x®T � �
Take any ϕ
(fv(�)-{x})→Λ and P
Π, and assume P � (�x. x#N ∧ x®T ∧ �)ϕ. That
is, assume �m
Λ. m�Nϕ∪fn(P) ∧ P � �ϕ{x←m}, where Nϕ∪fn(P)⊇fn(P,�ϕ) and
fv(�ϕ) ⊆ {x}. By Proposition 6-1, we obtain �m
Λ. m�Nϕ∪fn(P) � P � �ϕ{x←m},
that is P � (�x. x#N ∧ x®T � �)ϕ.

(2) � �x. x#N ∧ x®T � ���� �x. x#N ∧ x®T ∧ �
Take any ϕ
(fv(�)-{x})→Λ and P
Π and assume P � (�x. x#N ∧ x®T � �)ϕ; that is
assume (�m
Λ. m�Nϕ∪fn(P) � P � �ϕ{x←m}), where Nϕ∪fn(P)⊇fn(P,�ϕ) and
fv(�ϕ) ⊆ {x}. By Proposition 6-1, we obtain �m
Λ. m�Nϕ∪fn(P) ∧ P � �ϕ{x←m},
that is P � (�x. x#N ∧ x®T ∧ �)ϕ.

�

Remark. (GP) gives us a way to prove that �x.���� �x.�. This depends on the fact that the
set of names is non-empty, and is obviously not derivable from the normal quantifier rules.
Take N = fnv(�)-{x}. Starting from ���� �, by right weakening and quantifier introduction
we obtain �x. � �� �x. x#N ∧ x®T � �. Again starting from ���� �, by left weakening and

• For N
Fin(Λ∪ϑ) we define the formula η#N � �µ
N(η�µ). 
For any P and closed m#N, we have P � m#N iff m�N.

• Let fnv(�) � fn(�)∪fv(�), so that fnv(�)
Fin(Λ∪ϑ)
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quantifier introduction we obtain �x. x#N ∧ x®T ∧ � �� �x. �. By (GP) we have �x. x#N ∧
x®T � ���� �x. x#N ∧ x®T ∧ �. Hence, by transitivity we obtain �x. ���� �x. �. �

6.3  Fresh-Name Quantifier
Now, we can define quantification over fresh names, �x.�, as follows:

6-4  Definition (Fresh-Name Quantifier)
�x.� � �x. x#fnv(�)-{x} ∧ x®T ∧ �

�

Hence fn(�x.�) = fn(�) and fv(�x.�) = fv(�)-{x}.
Note that the right-hand side of this definition depends on the set of free names and

variables of �. Therefore, this is not a definition within the logic, but rather a meta-theo-
retical definition (or abbreviation) that should always be understood in its expanded form.
Any general theorem or derived rule involving �x.� will in fact be a schematic theorem or
rule with respect to the free names and variables of �, in the same way that (GP) is a rule
schema.

By (GP) (Proposition 6-3) we have:

In terms of satisfaction, we obtain:

6-5  Lemma (P � �x.�)
P � �x.�

iff �m
Λ. m�fn(P,�) ∧ P � �{x←m}
iff �m
Λ. m�fn(P,�) � P � �{x←m}

Proof
Note that P � �x.� implies that fv(�x.�) = �, that is fv(�) ⊆ {x}. Similarly, P �
�{x←m} implies that fv(�{x←m}) = �, that is fv(�) ⊆ {x}.
By definition of �, P � �x.� iff P � �x. x#fnv(�)-{x} ∧ x®T ∧ �. Since fv(�) ⊆ {x},
this is equivalent to P � �x. x#fn(�) ∧ x®T ∧ �; that is �m
Λ. P � m#fn(�) ∧ P �
m®T ∧ P � �{x←m}. This is the same as �m
Λ. m�fn(�) ∧ m�fn(P) ∧ P � �{x←m}.
The second equivalence is obtained by Proposition 6-1.

�

Therefore, �x.� can be understood as saying either that there is a fresh name x such
that � holds, or that for any fresh name x we have that � holds. These formulations are
equivalent because of the cofinite nature of sets of fresh names. If there is a suitably fresh
x such that � holds, then any other fresh name will work equally well, so all fresh names
will work. Conversely, if for all suitably fresh names � holds, since any set of fresh names
is (cofinite and hence) non-empty, there exists a fresh name for which � holds.

Remark. The meaning of �x.� when ��has free variables other than x is subtle. When we
write �x. ...n... we intend x to be fresh w.r.t. any existing name, and in particular n; similar-

�x.��	��� �x. x#fnv(�)-{x} ∧ x®T � �
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ly, when we write �x. ...y... we intend x to be fresh with respect to any name denoted by y.
Consider �y. �x. y=x; this formula should not be valid. In fact, it is contradictory because,
by definition, it means, �y. y®T ∧ �x. x≠y ∧ x®T ∧ y=x. Similarly, �y. �x. y=x and �y. �x.
y=x are contradictory. (Instead, �x. �y. x=y is valid.) �

The following rules are now derivable entirely within the logic:

6-6  Logical Corollaries (Fresh-Name Quantifier)
(� �) � �x.� 	�����x. x#N ∧ x®T ∧ � where N ⊇ fnv(�)-{x} and x�N
(� �) � �x. x#N ∧ x®T � ��	��� �x.� where N ⊇ fnv(�)-{x} and x�N
(� ¬) � ¬�x.� 	�����x.¬�
(� | ) � �x.(� | �) 	����(�x.�) | (�x.�)
(� ��) � ���� � �x.� ����x.�
(� fv) � �x.� 	����� where x�fv(�)
(� n[]) � �x.y[�] 	����y[�x.�] where x≠y
(� R) � ∧ x#N ∧ x®T �� � � ���� �x.� where N ⊇ fnv(�)-{x} and x ��N ∪ fv(�)
(� L) � ∧ x#N ∧ x®T �� � � �x.���� � where N ⊇ fnv(�)-{x} and x ��N ∪ fv(�)
(� E) ���� �x.�;� � ∧ x#N ∧ x®T �� � � ���� � where N⊇ fnv(�)-{x} and x�N∪fv(�)
�

Remark. The fresh-name quantifier is “in between” universal and existential quantification
(�x.���� �x.���� �x.�, by (� �)�and (� �)). Moreover, it is “right in the middle”, since it
enjoys many properties of both universal and existential quantification; for example, it is
self-dual (�x.� 	����¬�x.¬�, by (� �), (� �), and DeMorgan). �

Remark. We can show that �y. �x. x≠y. Start from x≠y ∧ x®T � x≠y, and generalize to
�y. �x. x≠y ∧ x®T � x≠y. By (� �) this means �y. �x. x≠y. By the previous remark, �x.
x≠y��� �x. x≠y, hence by (����) we obtain �y. �x. x≠y. �

Remark. Of particular interest (and difficulty) is the distribution of � over |, rule (� | ):
� �x.(� | �) 	����(�x.�) | (�x.�)

Distribution over | holds in one direction for universal quantification, in the other direction
for existential quantification, and in both directions for fresh-name quantification. This rule
can be understood informally as follows (this is a sketch of the formal derivation). In the
left-to-right direction we use the existential interpretation of �. Take any P; if P � �x.(� |
�) then there are a fresh name x and processes P’,P” such that P � P’ | P” and P’ � � and
P” � �. Hence, there is a fresh name x such that P’ � � and again a fresh name x such that
P” � �; that is, P’ � �x.� and P” � �x.�. Therefore, P � P’ | P” � (�x.�) | (�x.�). In the
right-to-left direction we use the universal interpretation of �. Take any P; if P � (�x.�) |
(�x.�) then there are processes P’,P” such that P � P’ | P” and P’ � �x.� and P” � �x.�.
This means that for all names x’ fresh in P’ and �, we have P’ � �{x←x’} and for all names
x” fresh in P” and �, we have P” � �{x←x”}. Now, for all names y that are fresh in P’,
�, P”, �; we have that P’ � �{x←y} and P” � �{x←y}. That is, P � P’ | P” �
�y.(�{x←y} | �{x←y}) = �x.(� | �). �
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7  Hidden-Name Quantifier

7.1  Definition
We can finally get back to our original aim of defining a hidden-name quantifier at the log-
ical level. We take:

7-1  Definition (Hidden-Name Quantifier)
Hx.�� � �x.x®�

�

Hence fn(Hx.�) = fn(�) and fv(Hx.�) = fv(�)-{x}. Moreover, by definition of �:

and, because of Logical Corollary 10-12(® ∧), we can simplify this to:

In terms of satisfaction, we obtain: 

7-2  Lemma (P � (νx)�)
P � Hx.� iff

�m
Λ. m�fn(P,�) ∧ �P’
Π. P � (νm)P’ ∧ P’ � �{x←m}

Proof
Satisfaction is defined for closed formulas, so �x. x#fnv(�)-{x} ∧ x®T ∧ x®� is the
same as �x. x#fn(�) ∧ x®T ∧ x®�. Then, P � �x. x#fn(�) ∧ x®T ∧ x®� means that
�m
Λ. m�fn(�) ∧ m�fn(P) ∧ P � m®�{x←m}, and from definition of satisfaction for
®, we obtain the statement.

�

7.2  Properties
We can now verify that this definition of the hidden-name quantifier fully satisfies the prop-
erty (νx-proper): 

7-3  Proposition (νx-proper)
For all n
Λ, x
ϑ, P
Π, and closed �
Φ:

n�fn(P) ∧ P ��Hx.(�{n←x}) ⇔ �P’
Π. P � (νn)P’ ∧ P’ � �

Proof

Case �)
P � Hx.(�{n←x}) � P � �x.x®(�{n←x})
� �m
Λ. m�fn(P,x®(�{n←x})) ∧ �P’
Π. P � (νm)P’ ∧ P’ � �{n←x}{x←m}
� �m
Λ. m�fn(P,�{n←x}) ∧ �P’
Π. P � (νm)P’ ∧ P’ � �{n←m}

Hx.� = �x. x#fnv(�)-{x} ∧ x®T ∧ x®�

Hx.� 	��� �x. x#fnv(�)-{x} ∧ x®�
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Suppose m = n. Then we immediately obtain �P’
Π. P � (νn)P’ ∧ P’ � �.
Suppose m ≠ n. Since n�fn(P) by assumption and P � (νm)P’ we have n�fn(P’) by
Lemma 2-1(1). Take P” = P’{m←n}. By Lemma 3-3, since n�fn(P’, �{n←m}) and
P’ � �{n←m}, we obtain P’{m←n} � �{n←m}{m←n}, that is, P” � �. Now, P �
(νm)P’ = (νn)P’{m←n} = (νn)P”, so that P � (νn)P”. We have shown that �P”
Π.
P � (νn)P” ∧ P” � �.

Case ⇐)
Assume �P’
Π. P � (νn)P’ ∧ P’ � �; then n�fn(P) by Lemma 2-1(1). Moreover:
�P’
Π. P � (νn)P’ ∧ P’ � � � P � n®�

� P � (x®�{n←x}){x←n} (since n®� is closed and hence x�fv(�))
� �n
Λ. n�fn(P, x®(�{n←x})) ∧ P � (x®�{n←x}){x←n}
� P � �x.x®�{n←x} � P � Hx.(�{n←x})

�

Remark. We saw that for the existential definition of the hidden-name quantifier, we ob-
tained the undesirable property (νn)n[] � �x.x®p[]. Since n[] � p[], Proposition 7-3 implies
that (νn)n[] � �x.x®p[]. As a sanity check, suppose that (νn)n[] � �x.x®p[]; this would
mean that �m
Λ. m�fn((νn)n[],p[]) ∧ �P’
Π. (νn)n[] � (νm)P’ ∧ P’ ��p[]. But P’ ��p[]
implies P’ � p[], and since m ≠ p we cannot have (νn)n[] � (νm)P’ by Lemma 2-1(1). �

Remark. We saw that for the universal definition of the hidden-name quantifier, we ob-
tained the undesirable property (νn)p[] � �x.x®¬x[]. Since p[] � ¬n[], Proposition 7-3 im-
plies that (νn)p[] � �x.x®¬x[]. In fact, p[] � ¬n[] implies (νn)p[] � n®¬n[], which is the
same as (νn)p[] � (x®¬x[]){x←n}, where n�fn((νn)p[],x®¬x[]). Therefore, �m
Λ.
m�fn((νn)p[],x®¬x[]) ∧ (νn)p[] � (x®¬x[]){x←m}, which means (νn)p[] � �x.x®¬x[] by
Lemma 6-5. �

Remark. We obtain �x. x®���� Hx.���� �x. x®�. However, there are no interesting rules
for ¬Hx.�. �

Remark. This fails: 
� Hx.� �� � where x�fv(�)

because (νn)(n[] | n[]) ���x.x®(¬0 | ¬0) but (νn)(n[] | n[]) ��¬0 | ¬0. This is ®’s fault, not
�’s: n®� �� � fails with the same counterexample. �

Remark. 
Property (νx-proper), Proposition 7-3, is derivable within the logic. That is:

n®T ∧ Hx.(�{n←x})�	��� n®�� where x ��fv(�):
In the left-to-right direction, from n®T ∧ Hx.(�{n←x}) we obtain by definition n®T ∧
�x.x®�{n←x}, and by (� �) we obtain n®T ∧ �x. x#fnv(x®�{n←x})-{x} ∧ x®T �
x®�{n←x}, which since x �� fv(�) is the same as n®T ∧ �x. x#fnv(�)-{n} ∧ x®T �
x®�{n←x}. By instantiating x to n, we get n®T ∧ (n#fnv(�)-{n} ∧ n®T � n®�{n←n}).
Since n#fnv(�)-{n} is true and is n®T assumed, we obtain n®�{n←n}, that is n®�.
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In the right-to-left direction, assuming n®�, from ���� T and (®���) we obtain n®���� n®T
and hence the first conjunct, n®T. Then we trivially obtain n#fnv(n®�{n←n})-{n} ∧ n®T
∧ n®�{n←n}, since these conjuncts are either true or implied by n®�. That formula is the
same as (x#fnv(x®�{n←x})-{x} ∧ x®T ∧ x®�{n←x}){x←n} since x ��fv(�). Then, by
(��R) we obtain �x. x#fnv(x®�{n←x})-{x} ∧ x®T ∧ x®�{n←x}. This implies, by (���),
that �x.x®�{n←x}, which is the same as Hx.(�{n←x}). �

7.3  Example
As an example of a specification containing a hidden-name quantifier, consider a situation
where a secret is shared by two locations n and m, but is not known outside those locations.

We can state this as follows (recall that ©η � ¬η®T and that P � ©n iff n
fn(P)):

It reads: for a fresh x, the name x is known at n and m, and is restricted anywhere else.
Expanding the definitions, we obtain:

The last line reads: P satisfies the specification iff there exists a name r that is fresh (not
conflicting with n and m or public to P), such that r is known to the processes R’ and R”
located at n and m, and is restricted inside P.

Here is a simple example of an implementation of this specification:

In process calculi, it is common to extrude the scope of a hidden name, to prepare for
the interaction between processes within a restricted scope and processes outside the scope.
We can do something similar at the logical level, extruding the scope of hiding quantifiers.
For example, we can infer, logically, that:

That is, suppose we start with a specification of the form Hx. � and we composed it with
another specification to obtain (Hx. �) | �, we may need to extrude Hx around � (assuming
w.l.o.g. that x is not free in �). We first use the property � �� Hx. � for x not free in �
(Logical Corollary (H fv) in 10-14) to infer (Hx. �) | (Hx. �). Then we use the property
(Hx. �) | (Hx. �) �� Hx. (� | x®�) (Logical Corollary (H | ) in 10-14). Thus, we infer the

Hx. (n[©x] | m[©x])

P ��Hx. (n[©x] | m[©x])
⇔ P ���x.x®(n[©x] | m[©x])
⇔ �r
Λ. r�fn(P)∪{n,m} ∧ �Q
Π. P � (νr)Q ∧ Q � (n[©x] | m[©x]){x←r}
⇔ �r
Λ. r�fn(P)∪{n,m} ∧ �Q
Π. P � (νr)Q ∧ Q � n[©r] | m[©r]
⇔ �r
Λ. r�fn(P)∪{n,m} ∧ �Q
Π. P � (νr)Q ∧ 

�Q’,Q”
Π. Q � Q’ | Q” ∧ Q’ � n[©r] ∧ Q” � m[©r]
⇔ �r
Λ. r�fn(P)∪{n,m} ∧ �Q
Π. P � (νr)Q ∧ 

�R’,R”
Π. Q � n[R’] | m[R”] ∧ R’ � ©r ∧ R” � ©r

⇔ �r
Λ. r�fn(P)∪{n,m} ∧ �R’,R”
Π. P � (νr)(n[R’] | m[R”]) ∧ r
fn(R’) ∧ r
fn(R”)

P = (νp) (n[p[]] | m[p[]])

(Hx. �) | � �� Hx. (� | x®�)
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specification Hx. (� | x®�), where Hx has been extruded, and where x® guarantees that
the choice of x does not clash with any name in the process that originally independently
satisfies �.

8  Connections with Other Logics

8.1  Relevant Logic
The shape of the definition of the satisfaction relation turns out to be very similar to Urqu-
hart’s semantics of relevant logic [34]. (Thanks to Peter O’Hearn and David Pym for point-
ing this out.) In particular �	� is similar to intensional conjunction, and ��� is similar
to relevant implication in that semantics. 

The main difference is that we do not have contraction: this rule is not sound for pro-
cess calculi, because P	P ≠ P under any reasonable equivalence. Urquhart’s semantics
without contraction, or even relevant logics without contraction, do not seem to have been
considered.

Moreover, we use an equivalence, �, instead of a Kripke-style partial order as in Urqu-
hart’s general case. If we were to adopt a partial order (perhaps some asymmetric form of
structural congruence), then the classical fragment of our logic would have to be replaced
by an intuitionistic fragment, in order to maintain the analogue of Lemma 3-1. This seems
to be the deep reason why we can get by with classical implication. 

8.2  Bunched Logic
Peter O’Hearn and David Pym study bunched logics [31], where sequents have two struc-
tural combinators, instead of the standard single “,” combinator (usually meaning ∧ or ⊗
on the left) found in most presentations of logic. Thus, sequents are bunches of formulas,
instead of lists of formulas. Correspondingly, there are two implications that arise as the
adjuncts of the two structural combinators. 

The situation is very similar to our combinators | and ∧, which can combine to irreduc-
ible bunches of formulas in sequents, and to our two implications � and �. However, we
have a classical and a linear implication, while bunched logics have so far had an intuition-
istic and a linear implication.

8.3  Linear Logic
We now relate a fragment of our logic to intuitionistic linear logic. Although the connec-
tions with some parts of linear logic are slightly degenerate, we can make them quite pre-
cise. We omit the proofs; these are not hard, except that deriving the rules of linear logic
within our logic requires some experience.

First note that, when considering | as a structural connective, we must reject weaken-
ing, which entails � �� 0, and contraction, which entails � �� � | �: both are unsound in our
process model. Therefore, we are at least somewhat close in spirit to linear logic. Our se-
quents are linear in the sense that we must have the same number of process components
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on the left and right of ��. In other words, space cannot be instantaneously created or de-
stroyed. Consequently, the implication � arising as an adjunct of | is a linear implication:
note that in ��� the attacker that satisfies ��is used exactly once in the system the satisfies
�.

Multiplicative intuitionistic linear logic (MILL) can be captured faithfully by identify-
ing 	
�MILL = �, ⊗MILL = |, and 1MILL = 0: the rules of MILL and the subset of our rules that
involve only those connectives (plus a derivable cut rule for | corresponding to the MILL
cut rule) are interderivable. However, this precise match is obtained by paring down both
linear logic and our logic. We can go further and draw a connection with full intuitionistic
linear logic (ILL [21,24,25,28]), both syntactically and semantically. The discrepancies
with ILL are as follows. We identify �ILL and 0ILL (as F); therefore, �� acquires special
properties. The additives ⊕ and & distribute over each other (both semantically and as a
derived rule). The semantic interpretation of !� is rather degenerate; in particular, !� 	
� �
does not seem to have an interesting interpretation. The inference rules of ILL are listed in
the proof of Proposition 8-9.

Quantales
A Quantale [21] is a complete join semilattice with a commutative monoid structure that
distributes over join. That is:

8-1  Definition (Quantale)
A quantale 
 is a structure <S : Set, ≤ : S2→Bool, � : �(S)→S, ⊗ : S2→S, 1 : S> 
such that for any p,q,r 
�S and Q ⊆ S:
p ≤ p
p ≤ q� ∧  q ≤ r �  p ≤ r
p ≤ q ∧  q ≤ p �  p = q
p ⊗ (q ⊗ r) = (p ⊗ q) ⊗ r
p ⊗ q = q ⊗ p
p ⊗ 1 = p
�Q 
�S
�q 
�Q. q ≤ �Q
(�q 
�Q. q ≤ p) �  �Q ≤ p
p ⊗ �Q = �{p ⊗ q � q 
�Q}

�

Quantales are models of intuitionistic linear logic, according to the following mapping
 �!
�(we omit the subscript when 
�is unambiguous), where A∨B ���{A, B}, A∧B ���{C
� C ≤ A ∧ C ≤ B}, and υX. A{X} ���{C � C ≤ A{C}}.

8-2  Definition (ILL)
(1)  1ILL!� � 1

 �ILL!� � any element of S
 "ILL!� � �S
 0ILL!� � ��
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 � ⊕ �!� �  �! ∨  �!
 � & �!� �  �! ∧  �!
 � ⊗ �!� �  �! ⊗  �!
 � 	
� �!� � �{C � C ⊗  �! ≤  �!}
 !�!� � υX. 1 &  �! & (X⊗X)

(2) vldILL(�1, ..., �n ��ILL �)
 �  �1!
 ⊗
 ... ⊗
  �n!
 ≤
  �!

In particular, vldILL(��ILL �)
 iff 1
 ≤
  �!
.

(3) vldILL(�1, ..., �n ��ILL �) � for all quantales 
, vldILL(�1, ..., �n ��ILL �)

�

The following theorem is folklore:

8-3  Proposition (Soundness and Completeness)
�1, ..., �n ��ILL � iff vldILL(�1, ..., �n ��ILL �).

�

The Process Quantale

8-4  Proposition (Process Quantale)
The structure Θ � <Φ, ⊆, #, ⊗, 1> is a quantale, where, for A,B ⊆ Π:
A� �� {P � �Q 
�A. P�Q}
Φ �� {A� � A ⊆ Π}
A ⊗ B �� {P|Q � P 
�A ∧ Q 
�B}�

1 �� {0}�

Proof
⊗ : Φ2→Φ, by definition.
1 : Φ, by definition.
# : �(Φ)→Φ, since a union of �-closed sets is �-closed.
A ⊗ (B ⊗ C) = {P|S � P 
�A ∧ S 
�B ⊗ C}� 

= {P|S � P 
�A ∧ S 
�{Q|R � Q 
�B ∧ R 
�C}�}�

= {T � T�P|S ∧ P 
�A ∧ S�Q|R ∧ Q 
�B ∧ R 
�C}
= {T � T�P|(Q|R) ∧ P 
�A ∧ Q 
�B ∧ R 
�C}
= {T � T�(P|Q)|R ∧ P 
�A ∧ Q 
�B ∧ R 
�C}
= ... = (A ⊗ B) ⊗ C

A ⊗ B = {P|Q � P 
�A ∧ Q 
�B}� 
= {Q|P � P 
�A ∧ Q 
�B}�

= B ⊗ A 
A ⊗ {0}� = {P|Q � P 
�A ∧ Q 
�{0}�}� 

= {T � T�P|Q ∧ P 
�A ∧ Q�S ∧ S =�0}
= {T � T�P|0 ∧ P 
�A}
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= {T � T�P ∧ P 
�A}
= A

A ⊗ #Θ = {P|Q � P 
�A ∧ Q 
�#Θ}�

= {T � T�P|Q ∧ P 
�A ∧ Q 
�#Θ}
= #{{T � T�P|Q ∧ P 
�A ∧ Q 
�B} � B 
�Θ}
= #{{P|Q � P 
�A ∧ Q 
�B}� � B 
�Θ}
= #{A ⊗ B � B 
�Θ}

�

Our logic is interpreted as follows: 

8-5  Definition (Interpretation in Θ)
 �! � {P:Π � P � �}

�

Note that, by Proposition 3-1,  �!�=  �!�.

Remark. It would be possible to consider “enriched quantales” that have additional struc-
ture corresponding to ambient operations. That is, we could add to the structure an operator
-[-]: Λ×S→S that distributes over join: n[�Q] = �{n[q] � q 
�Q}. (In the process quantale,
we would have n[A] �� {n[P] � P 
�A}�.) We could then add to ILL the connectives n[�]
and �@n, with interpretation:

 n[�]!� � n[ �!]
 �@n!� � �{C � n[C] ≤  �!}

A similar enrichment could be obtained also for x®�. However, we do not pursue this fur-
ther.
�

Embedding Intuitionistic Linear Logic
In this paper, the linear constants 1,",0 are known respectively as 0,T,F, and are interpreted
in the process quantale as follows: 0 = {0}�, T = Π, F = �.

As for the fourth linear constant, �, there are a few possible choices in Φ, producing
alternative linear logics:

• ��= �. Then ��has the sense of unsatisfiability. We have the identification ��= F, and
�� is what we have called �F, with its additional axioms. This seems to us the only
really reasonable choice.

• ��= {0}�. Then � has the sense of (trivially) deadlocked processes, which might ap-
pear more in tune with an interpretation of linear logic as a theory of concurrency.
We have the identification, ��= 0, and �� is what we might call �0. However, the
notion of �0, the set of processes that when composed with ��processes produce 0,
seems pretty trivial in most process calculi. 

• Factoring over a more general equivalence ≈, rather than simply �, would give us a
better notion of deadlocked processes. We could perhaps keep 0 = {0}��and take �
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= {0}≈. Still, under most equivalences, there are not many processes that can neu-
tralize other processes by simple composition.

Therefore, we embed intuitionistic linear logic into our logic as follows:

8-6  Definition (Embedding ILL)
1ILL� � 0
�ILL� � F
"ILL� � T
0ILL� � F
� ⊕ �� � � ∨ �
� & �� � � ∧ �
� ⊗ �� � � | �
� 	
� �� � � � �
!�� � 0 ∧ (0 � �)¬F

�

For these definitions to be meaningful, we need to show that the logical constants and
operators defined on the left match the corresponding semantic constants and operators in
the quantale Θ, according to Definition 8-2.

8-7  Proposition (Soundness of the ILL interpretation)
The linear constants and operators correspond to their quantale definitions in Θ.

Proof
We show only the most interesting cases:

⊗) Show  � ⊗ �! =  �! ⊗  �!.
P 
  � ⊗ �!� ⇔ P 
  � | �!� ⇔ P � � | ��

⇔ �P’,P”:Π. P � P’|P” ∧ P’ � � ∧ P” � ��

⇔ P 
 {P’|P” � P’ � � ∧ P” � �}���� 
⇔ P 
 {P’|P” � P’ 
  �! ∧ P” 
  �!}����

⇔ P 
  �! ⊗  �!

	
�) Show  � 	
� �! =  �! 	
�  �!.
Let A =  �!�and B =  �!.
P 
  �! 	
�  �! �⇔ P 
 A 	
� B� ⇔ P 
 #{C � C ⊗ A ⊆ B}
⇔ �C. P 
 C ∧ C ⊗ A ⊆ B
⇔ �C. P 
 C ∧ �Q. (�Q’,Q”. Q � Q’|Q” ∧ Q’ 
 C ∧ Q” 
 A) � Q 
 B

⇔ �Q”. Q” 
 A � P|Q” 
 B

The last step works as follows:
1) Assume �C. P 
 C ∧ �Q. (�Q’,Q”. Q � Q’|Q” ∧ Q’ 
 C ∧ Q” 
 A) � Q 
 B. Take
any R and assume R 
 A. Instantiate the assumption with P|R for Q and take Q’=P and
Q”=R; we obtain P|R 
 B. 



Wednesday, September 3, 2003, 4:59 pm 45

2) Conversely, assume �R. R 
 A � P|R 
 B. Take C={P}�, take any Q, and assume
(�Q’,Q”. Q � Q’|Q” ∧ Q’ 
 {P}� ∧ Q” 
 A). Instantiating the assumption with Q” for
R, we obtain P|Q” 
 B. Now, Q’ ��P by assumption, hence P|Q” ��Q’|Q” � Q. Since
B is �-closed, we obtain Q 
 B.
Hence P 
  �! 	
�  �! �⇔ �Q”. Q” 
 A � P|Q” 
 B �⇔ �Q”. Q” � � � P|Q” � �

⇔ P � � � � ⇔ P 
  � � �! ⇔ P 
  � 	
� �!.

!) Show  !�! = ! �!.
First we show that �P. 0 � � ⇔ P � (0 � �)¬F. 
Take any P; by definition of �, we have P � (0 � �)¬F ⇔ (�Q. Q � 0 � �). Then,
(�Q. Q � 0 � �) ⇔ (�Q. Q � 0 � Q � �) ⇔ 0 � �. The last step is by instantiation
of Q with 0, in one direction, and by Proposition 3-1, in the other direction.
Then we compute: P 
  !�! �⇔ P 
  0 ∧ (0 � �)¬F! �⇔ P 
  0! ∧ P 
  (0 � �)¬F!

⇔ P � 0 ∧ P � (0 � �)¬F �⇔ �P � 0 ∧ 0 � �.
Now, in a quantale !A = υX. 1 & A & (X⊗X), which in Θ means υX. {0}� ∩ A ∩ (X |
X). If 0 � A then {0}� ∩ A = �, and !A = �. If instead 0 
 A, then {0}� ∩ A = {0}�, and
!A = υX. {0}� ∩ (X | X). We have that {0}� is a fixpoint of λX. {0}� ∩ (X | X); more-
over, if B = {0}� ∩ (B | B) then B ⊆ {0}�, hence {0}� is the greatest fixpoint, and !A
= {0}�. In conclusion: if 0 � A then !A = ��else if 0 
 A then !A = {0}� and, by contra-
positive, if !A ≠ � then 0 
 A.
Hence P 
 ! �! �� ! �! ≠ � � 0 
  �! � ! �! = {0}� � P 
 {0}�; that is P 

! �! � P � 0 ∧ 0 � �. Conversely, if P � 0 ∧ 0 � �, then 0 
  �! � ! �! = {0}�

� P 
 ! �!.
In conclusion P 
 ! �! �⇔ �P � 0 ∧ 0 � � �⇔ �P 
  !�!.

�

Moreover, in our model the linear notion of validity matches our notion of validity:

8-8  Proposition
Let �1, ..., �n, � be formulas in ILL.
vldILL(�1, ..., �n ��ILL �)Θ� ⇔ vld(�1 | ... | �n �� �)
(For n=0 this means: vldILL(���ILL �)Θ� ⇔ vld(0 �� �).)

Proof
(�P. P � �1|...|�n � �) ⇔ (�P. P � �1|...|�n � P � �)
⇔ (�P. P 
  �1|...|�n! � P 
  �!) ⇔  �1|...|�n! ⊆  �!

⇔  �1! ⊗ ... ⊗  �n! ⊆  �!

�

Furthermore, we can derive the rules of intuitionistic linear logic within our logic. In
particular, we can derive the “strong” rules for !��that correspond to an interpretation of !
as a maximal fixpoint [24, 28, 21].
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8-9  Proposition
Derivations in ILL can be mapped to derivations in the ambient logic. More precisely,
let �1, ..., �n, � be formulas in ILL, then:
�1, ..., �n ��ILL �� � (...(�1) | ... ) | �n �� �
(Where for n=0 this means:  ��ILL �� � 0 �� �.)

Proof
We show that the inference rules of ILL [21] are derivable in the ambient logic, under
the operator mapping of Definition 8-6 and the sequent mapping shown in the state-
ment above. (We often omit the steps involving just the reassociation of (...(�1) | ... ) |
�n�on the left of ��.) We use nested brackets � ... � to indicate the structure of proof trees.

(Id) �ILL ����ILL �
We show: � ���� �. Simply by (Id).

(Cut) ����ILL �;� 
, � ��ILL �� �ILL �, 
���ILL �
We show: ���� �;� 
�| � �� �� � ��| 
��� �.  
� ����� �;� �
�| � �� � �( |��) 
��� ��� � � �( |���) ��| 
��� ��|����;
�(Id) ��� �� ���� �( |��)(X-L) ��|���� �� �;
� �(Trans) ��| 
��� �

(Exchange) �, �, �, 
 ��ILL � �ILL �, �, �, 
 ��ILL �
We show: ((��| �)�| �)�| 
 �� � � ((��| �)�| �)�| 
 �� �.
� ��(Id) ���� �; �(X |�) ��| � �� ��| �� �( | ��) ��| (��| �) �� ��| (��| �);

((��| �)�| �)�| 
 �� � �( |��) (��| �)�| � �� 
�� �(A |�)(Trans) ��| (��| �) �� 
��

� �(Trans) ��| (��| �) �� 
�� �(A |�)(Trans) (��| �)�| � �� 
�� �( |��) ((��| �)�| �)�| 
 �� �

(⊗ R) � ��ILL �;� 
 ��ILL � �ILL �, 
���ILL � ⊗ �
We show: ���� �;� 
 �� �� � ��| 
��� ��| �. Simply by ( | ��).

(⊗ L) �, �, � ��ILL � �ILL �, ��⊗ � ��ILL �
We show: (��| �)�| � �� � � ��| (��| �) �� �. Simply by (A | ) and (Trans).

(1 R) �ILL ��ILL 1ILL

We show: � 0��� 0. Simply by (Id).

(1 L) � ��ILL � �ILL �, 1ILL ��ILL �
We show: � �� � � ��| 0 �� �. Simply by ( | 0) and (Trans).

(& R) � ��ILL �;� � ��ILL � �ILL ����ILL � & �
We show: ���� �;� � �� �� � ���� ��∧ �. Simply by (∧ ��) and (C-L).

(& L1) �, � ��ILL � �ILL �, ��& � ��ILL �
We show: ��| � �� � � ��| (��∧ �) �� �.  
� � �(Id) � �� �; ��(Id) � �� � �(W-L) ��∧ � �� � � � �( | ��) ��| (��∧ �) �� ��| �; 
��| � �� �

� �(Trans) ��| (��∧ �) �� �
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(& L2) �, � ��ILL � �ILL �, ��& � ��ILL �
We show: ��| � �� � � ��| (��∧ �) �� �.  
� � �(Id) � �� �; ��(Id) � �� � �(W-L)(X-L) ��∧ � �� � � � �( | ��) ��| (��∧ �) �� ��| �; 
��| ���� �

� �(Trans) ��| (��∧ �) �� �

(" R) �ILL � ��ILL "ILL

We show: � � �� T.  
�(Id) T��� T �(W-L) T∧���� T �(X-L) �∧T��� T �(T) ���� T

(⊕ R1) � ��ILL � �ILL � ��ILL � ⊕ �
We show: ���� �� � ���� � ∨ �. Simply by (W-R) and (X-R).

(⊕ R2) � ��ILL � �ILL � ��ILL � ⊕ �
We show: ���� �� � ���� � ∨ �. Simply by (W-R).

(⊕ L) �, ����ILL �;� �, � ��ILL �� �ILL �, � ⊕ ����ILL �
We show: ��| ���� �;� ��| � �� �� � ��| (� ∨ �)��� �.  
� ���| ���� �;� ��| � �� � � �(∨���) (��| �) ∨ (��| �)��� � ∨ �;
�( | ∨) ��| (� ∨ �)��� (��| �) ∨ (��| �)

� �(Trans)(C-R) ��| (� ∨ �)��� �

(0 L) �ILL �, 0ILL ��ILL �
We show: � ��| F �� �.  
�(Id) F��� F �(W-R) F��� (���)∨F �(X-R) F��� F∨(���) �(F) F��� ���

�( | �) F�| � �� � �(X | )(Trans) ��| F �� �

(	
� R) �, � ��ILL �� �ILL � ��ILL �	
��
We show: ��| � �� �� � � �� ���. Simply by ( | �).

(	
� L) ����ILL �;� 
, � ��ILL �� �ILL �, 
, �	
�����ILL �
We show: ���� �;� 
�| � �� �� � ��| 
�| ������ �.  
� � ����� �;� �(Id) ��� �� ��� � �( |���) ��|������� ��|����;
�(Id) ��� �� ���� �( |��)(X-L) ��|���� �� �;
� �(Trans) ��|������� � �( |���)(...) ��|�
�|������� 
�|��;

�| � �� �
� �(Trans) ��|�
�|������� �

(! L1) �ILL !� ��ILL 1ILL

We show: � 0 ∧ (0 � �)¬F �� 0.
�(Id) 0 �� 0� �(W-L) 0 ∧ (0 � �)¬F �� 0�

(! L2) �ILL !� ��ILL �
We show: 0 ∧ (0 � �)¬F �� �.
� �(Vld T) (0 � �)¬F �� 0 � �� �(W-L)(X-L) 0 ∧ (0 � �)¬F �� 0 � �; 
�(Id) 0 �� 0� �(W-L) 0 ∧ (0 � �)¬F �� 0�



48 Wednesday, September 3, 2003, 4:59 pm

� �(� E) 0 ∧ (0 � �)¬F �� �

(! L3) �ILL !� ��ILL !��⊗ !�
We show: � 0 ∧ (0 � �)¬F �� (0 ∧ (0 � �)¬F)�| (0 ∧ (0 � �)¬F).
First we show that T�| (0 � �) �� 0 � �.
�( | ∧0) (0 � �)�| T ∧ 0 �� 0 � �� �(¬-R) (0 � �)�| T �� ¬0 ∨ ¬0 ∨ �
�(A-R)(C-R)(X | )(Trans) T�| (0 � �) �� 0 � �
Now we take � = (0 � �)¬F¬:
� T�| (0 � (0 � �)¬F¬) �� 0 � (0 � �)¬F¬

= T�| ¬(0 ∧ (0 � �)¬F) �� ¬(0 ∧ (0 � �)¬F)
�(¬ ��)(...) 0 ∧ (0 � �)¬F �� ¬(T�| ¬(0 ∧ (0 � �)¬F));

�( | T)(X-R) 0 ∧ (0 � �)¬F ��(0 ∧ (0 � �)¬F)�| T
� �(∧ ��)(C-L) 0 ∧ (0 � �)¬F��� (0 ∧ (0 � �)¬F)�| T ∧ ¬(T�| ¬(0 ∧ (0 � �)¬F))
�( | ¬) (0 ∧ (0 � �)¬F)�| (0 ∧ (0 � �)¬F)

(! R) � ��ILL 1ILL; � ��ILL �; � ��ILL ��⊗ �  �ILL � ��ILL !�
We show: � �� 0; � �� �; � �� ��| �  � � �� 0 ∧ (0 � �)¬F.
(The assumption � �� ��| � is not used.)
� � � �� �� � �(¬ ��) ¬� �� ¬�� ; � �� 0 � �( | ��) ¬��| ���� ¬��| 0

�( | 0)(Trans) ¬��| � �� ¬� �(¬-L)(X-L)(...) (0�| �) ∧ (¬��| �) �� F ;
�( | ∧) (0�∧ ¬�)�| � �� (0�| �)�∧ (¬��| �)
� �(Trans) (0�∧ ¬�)�| ���� F �(X | ) ��| (0�∧ ¬�)��� F
�( |��) � �� (0�∧ ¬�)F = (0 � �)¬F ;

� �� 0
� �(∧ ��)(C-L) ���� 0�∧ (0 � �)¬F

�

Remark.  The rules � ��ILL � �ILL �, � ��ILL ��(weakening) and �, �, � ��ILL � �ILL �,
� ��ILL ��(contraction) are not valid. Under our interpretation, they mean � �� � � ��| � ��
��and ��| ��| � �� � � ��| � �� �. For weakening, note that 0 �� 0 is valid, but 0 | n[T] �� 0
is not. For contraction, note that 0�| n[T]�| n[T] �� n[T]�| n[T] is valid, but 0�| n[T] �� n[T]�|
n[T] is not. To satisfy weakening, we would need an ambient calculus where at least n[P]
� 0, but then much would collapse (e.g. n[P] � m[Q]). To satisfy contraction, we would
need an ambient calculus where at least n[P]�| n[Q] � n[P | Q], so that a process satisfying
n[m[T]]�| n[m[T]] could be hierarchically coalesced to satisfy n[m[T]].
�

8-10  Corollary
Let �1, ..., �n, � be formulas in ILL.
vldILL(�1, ..., �n ��ILL �)� � �1|...|�n �� �. 
�1|...|�n �� �� � vldILL(�1, ..., �n ��ILL �)Θ.
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Proof
vldILL(�1, ..., �n ��ILL �)� � �1, ..., �n ��ILL � by Proposition 8-3; then �1, ..., �n

��ILL �� � �1|...|�n �� � by Proposition 8-9.
�1|...|�n �� �� � vld(�1|...|�n �� �) by the validity of the inference rules of the ambi-
ent logic; then vld(�1|...|�n �� �)� � vldILL(�1, ..., �n ��ILL �)Θ by Proposition 8-8.

�

The structure Θ is in fact more than a quantale: it is also a boolean algebra. Hence we
have a classical-logic structure as well, given by <Φ, ⊆, #, $, Φ-complement>.

9  Related Work and Conclusions
We have introduced a logic for describing concurrent processes with restricted names.
Most previous logics for concurrency have strived to describe properties that are invariant
under some coarse process equivalence, such as bisimulation. In that context, composition
and guarantee were anticipated by Dam [19], and the hidden name quantifier was anticipat-
ed by Caires [3]; then followed much work on logics for π-calculus (e.g., see [20]). 

Because of our original motivation in describing location structures in detail, the prop-
erties described by our logic are much finer, and are invariant only up to structural congru-
ence (see also [32] for a characterization). Because of this, our logic is closely related to
intuitionistic linear logic and to bunched logics. Our logic is unusual also because it handles
variables ranging over a countable universe of names; these variables can be the subject of
universal, existential, fresh-name, and hidden-name quantification.

Our logic is built directly out of a process model, so logical soundness is easy to check.
Logical completeness is a much more difficult question. In separate work, it is shown that
an interesting propositional fragment is complete [7]. We do not have completeness results
for the full logic, but we have shown that, in terms of expressiveness, all the theorems of
intuitionistic linear logic can be derived. So far, we have mostly tried to discover as many
true logical facts as possible, and to minimize the collection of basic rules. We have con-
centrated in particular on commutation and distribution properties of operators that can be
useful in formal proofs.

Fresh-name quantification is modeled after Gabbay and Pitts [23], adapted to our con-
text; it provides logical rules for reasoning abstractly about freshness. Hidden-name quan-
tification is obtained by combining fresh-name quantification with a revelation operator
(not a quantifier) for revealing restricted process names. Most novel axioms have to do with
revelation; they often reflect and resemble well-known properties of π-calculus restriction.

A model checker is an algorithm that determines the truth of the assertion P � �, given
process P and formula � as input. Model checking the ambient logic is beyond the scope
of the present article, but is considered in others. Our conference paper [13] describes a
simple algorithm for model checking the fragment of the calculus without replication and
restriction against the fragment of the logic without guarantee and revelation. Charatonik
and others [15] present a PSPACE algorithm and show the problem to be PSPACE-com-
plete. Charatonik and Talbot [16] show that either including replication in the calculus or
guarantee in the logic leads to undecidability. Moreover, they extend the algorithm of
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Charatonik and others [15] to include restriction in the calculus and revelation in the logic,
while preserving its PSPACE complexity.

Sangiorgi [32] studies the equivalence relation that relates ambient processes if they
satisfy the same formulas of the logic. He presents a co-inductive characterization of this
relation, and shows it to be nearly identical to structural congruence. 

Dal Zilio [18] extends the logic with least and greatest fixpoints as in the propositional
µ-calculus. He presents a simple condition for coincidence for least and greatest fixpoints.

Ghelli and one of the authors [9] have developed a spatial fragment of the Ambient
Logic into a query language for semistructured data: TQL. Logical equivalences can be
used for query transformations. Research continues in using the hidden-name quantifier in
this context. Related logics for graphs [8] are also being studied.

Parallel work of one of the authors with Caires [4,5] investigates a logic for π-calculus,
along the same general lines as the Ambient Logic. Apart from the differences in the un-
derlying calculi, that work uses a technically different formulation of sequents [5] and han-
dles freshness through a logical quantifier (rather than through an axiom schema as done
here). That work handles recursive formulas, and in particular the interaction of recursion
with freshness, but does so through a more sophisticated model [4] than the one presented
here.

Acknowledgments
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Peter O’Hearn, David Pym, and Glynn Winskel directed us to relevant literature. Gordon
Plotkin suggested the new axioms for structural congruence, as studied in [22]. Useful com-
ments were made by Martín Abadi and Todd Knoblock.

10  Appendix

10.1  Logical Corollaries
10-1  Logical Corollaries of Proposition 4-5 (Propositional Logic)
(Ded) ���� �� ⇔ T��� ���
(Trans) ���� � ∧ ���� � � ���� �
(Valid) ���� � � (T��� ��� T��� �)
(∧ ��) ���� �; ����� �� � �∧����� �∧��
(∨ ��) ���� �; ����� �� � �∨����� �∨��
(¬ ��) ���� � � ¬���� ¬�

(� ��) ���� �; ����� �� � ������� ����
�
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10-2  Logical Corollaries of Proposition 4-6 (Composition Rules)
( | ∧) � (�∧�) | � �� � | ��∧ � | �
( | ∨) � � | ��∨ � | � �� (�∨�) | �
( | T) � � �� T | � 
( | F) � F | � �� F 
(0 ¬ | ) � 0 �� ¬(¬0 | ¬0) 
( | ∧0) � � | � ∧ 0 �� � 
( | ¬) � ¬(� | �) ∧ (� | T) �� (T | ¬�)

� ¬(T | �) �� T | ¬�
� ¬(� | �) �� (¬� | T) ∨ (T | ¬�)

( |-E) ���� �� | ��; ��∧(�� | ��)��� �; ��∧(�� | ��)��� �
� (�∧(��∧��))∧(�� || ��)��� �

(����) ����� �; ���� �� � ������ �����
(�F���) ���� � � �F��� �F

(��| ) � (���) | � �� �
(��) � (���) | (���) �� ���
(�-L) � �� �; � �� � � � | (���) �� �
�

10-3  Logical Corollaries of Proposition 4-7 (Location Rules)
(n[] ∧) � x[�∧�]��� x[�]∧x[�]
(n[] ∨) � x[�]∨x[�] �� x[�∨�]
(n[] F) � x[F]��� F
(@ ��) ���� � � �@x��� �@x
(n[�@n]) � x[�@x]��� �
(n[�]@n) � ��	��� x[�]@x
(n[¬�]) � x[�]��� ¬x[¬�]; � x[¬�]��� ¬x[�]
(¬n[�]) � ¬x[¬�]�	��� x[T] � x[�]; � ¬x[�]�	��� ¬x[T] ∨ x[¬�]
�

The converse of (@ ��) is not true. It is equivalent to asking that (�P:Π. n[P] � � �
n[P] � �) � (�P:Π. P � � � P � �). Let � = n[T] ∨ ¬n[T] and � = n[T]. Then (�P:Π.
n[P] � (n[T] ∨ ¬n[T]) � n[P] � n[T]), but not (�P:Π. P � (n[T] ∨ ¬n[T]) � P � n[T])
because of, say, P = 0.
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10-4  Logical Corollaries of Proposition 4-8 (Modalities)
(� ��) ���� � � ����� �� (� ��) ���� � � ����� ��

(� ∧) � �(�∧�)�	��� ��∧�� (� ∧) � �(�∧�)�	��� ��∧��
(� T) � � �� �� (� T) � � �� ��
(� �) � �� �� �� (� �) � �� �� ��

(� K) � �� � �� �� �(� � �) (� K) � �� � �� �� �(� � �)
(� 4) � ��� �� �� (� 4) � ��� �� ��
(� ∨) � �(�∨�)�	��� ��∨�� (� ∨) � �(�∨�)�	��� ��∨�� 
(� F) � �F��� F (� F) � �F��� F 
(��) � ��� �� ���
�

10-5  Logical Corollaries of Proposition 4-8 (Modalities and Locations 1)
(%%%%%%��@) � �@n �� (��)@n
(%%%%%%��@) � (��)@n �� �@n
(%%%%%%���) � (��)�� �� ���; � (��)�� �� �(���)
(%%%%%%���) � ��� �� (��)��; � �(���) �� (��)��
�

The following corollaries depend on the rules (� n[]) and (� | ).

10-6  Logical Corollaries of Proposition 4-9 (Modalities and Locations 2)
(%%%%%%��@-2) � �(�@n) 	��� (��)@n
(%%%%%%���-2) � �(���) �� (��)�(��)
(� n[]) � �n[�]��� n[��]
�

Remarks. 
• The converse of (� n[]) is not valid: n[m[out n]] � n[�T] but n[m[out n]] � �n[T]. 

• The converse of (� n[]) is not valid: open m.n[] | m[] � �n[T] but open m.n[] | m[]
� n[�T].

• The rule �(� | �)��� �� | ���is not valid: n[m[out n]] � �(n[T] | T) but n[m[out n]]
� �n[T] | �T.

�

10-7  Logical Corollaries of Proposition 4-10 (Satisfiability Rules)
(�F���) ���� � � �F��� �F

(1) � T 	��� FF

� F 	��� TF

� T 	��� T¬F

� F 	��� FF¬

� � | �F �� F



Wednesday, September 3, 2003, 4:59 pm 53

� � �� �FF

� �¬F �� �¬¬; � �FF �� �F¬; � �¬F �� �FF; � �¬¬ �� �F¬; � �¬F �� �F¬

� �F¬ 	��� �FF

(2) T �� �F �� � �� F
(3) � ��� �� �F��F

�

10-8  Logical Corollaries of Proposition 4-10 (Modalities and Validity 1)
(%%%%%%���F) � (��)F �� �F; � (��)F �� �(�F)
(%%%%%%���F) � �F �� (��)F; � �(�F) �� (��)F

�

The following corollaries depend on the rules (� n[]) and (� | ).

10-9  Logical Corollaries of Proposition 4-10 (Modalities and Validity 2)
(%%%%%%���F-2) � �(�F) 	��� (��)F; � �(�F) 	��� �F

(%%%%%%���F-2) � �(�F) �� (��)F; � �(�F) 	��� �F

�

Remark. The converse of (%%%%%%���F-2), (��)F �� �(�F) is not valid. It means:
(�P’:Π. �P”:Π. P’ 	
�* P” ∧ ¬P” � �) � (�Q:Π. ¬Q � �)

Its contrapositive is:
(�Q:Π. Q � �) � (�P’:Π. �P”:Π. P’ 	
�* P” � P” � �)

which asserts that if a formula is satisfiable, then there is a process that stably satisfies that
formula under all reductions. Consider the formula n[T] ∧ �m[T]. This is satisfiable, but
once m[T] holds, n[T] can no longer hold. �

10-10  Logical Corollaries of Proposition 4-10 (Vld,Sat are Modal S5)
(Sat) � Sat � 	��� ¬Vld¬�

(Vld K) � Vld(� � �) �� (Vld �) � (Vld �)
(Vld T) � Vld � �� �
(Vld 4) � Vld � �� Vld Vld �
(Vld 5) � Sat � �� Vld Sat �
(Vld ��) ���� � � Vld ���� Vld��
(Vld ∧) � Vld(�∧�) 	��� Vld ��∧ Vld �
(Sat ∨) � Sat(�∨�) 	��� Sat ��∨ Sat��
(Vld T) � T �� Vld T
(Sat F) � Sat F �� F
�

From the Logical Corollaries 10-9, we also obtain, for example, � Vld � 	��� � Vld �.
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10-11  Logical Corollaries of Proposition 4-11 (Quantifiers)
(�-L) ���� � � �x.���� � where x ��fv(�)
(�-R) � �� �{x←η} � ���� �x.� where η is a name or a variable
(Subst) ���� � � �{x←η}��� �{x←η}
(�-E) ���� �x.� � ���� �{x←η}
(�-E) ���� �x.�; �∧���� � � ���� � where x ��fv(�∨�)
(� α) � �x.��	��� �y.�{x←y} where y ��fv(�)
(� α) � �y.�{x←y}�	��� �x.� where y ��fv(�)
(� ��) ���� � � �x.���� �x.�
(� ��) ���� � � �x.���� �x.�
(� | ) � (�x.�)�	(�x.�)��� �x.(��	�)
(� | ) � �x.(��	�)��� (�x.�)�	(�x.�)
(� n[]) � η[�x.�]��� �x.η[�] where x ≠�η
(� n[]) � �x.η[�]�	��� η[�x.�] where x ≠�η
(��®) � η®�x.� ����x.η®� where x ≠�η
(��®) � �x.η®� 	����η®�x.� where x ≠�η
�

10-12  Logical Corollaries of Proposition 5-1 (Revelation)
(�) � ��x�x�	������x
(� �) � ��y�x������x�y
(® � R) � �����(x®�)�x

� x®�����(x®�)�x
(® � L) � x®(��x)�����

� x®(��x)������x
(® � | ) � x®((� | �)�x) 	����x®(��x) | x®(��x)
(® | ®) � x®(x®� | x®�) 	����x®� | x®�

� x®� | x®��	����(x®� | x®�)�x
( | ® �) � x®� | x®(��x)����x®(� | �)
(� | ®) � ��x | x®���� (� | x®�)�x
(® ∨) � x®(��∨ �) 	����x®��∨ x®�
(® ∧) � x®(��∧ �) �� x®��∧ x®� hence: � x®��	����x®� ∧ x®T
(® F) � x®F ���F
(� T) � T 	����T�x
(� F) � F�x 	����F
(� ∨) � (��∨ �)�x 	������x�∨ ��x
(� ∧) � (��∧ �)�x 	������x�∧ ��x
(� 0) � 0 ���0�x
(® ¬0) � x®¬0 ���¬0
(� | ) � ��x | x®(��x) ���(� | �)�x

� (� | �)�x �����x | ��x
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(� ®) � ��x����(x®�)�x hence: � x®(��x)����x®�
(® ∧ �) � x®(� ∧ ��x)�	����x®� ∧ � hence: � x®(��x)�	����x®T ∧ �
(® ∨ �) � x®(� ∨ ��x)����x®� ∨ �
(� ��) ���� � � ��x��� ��x
(® � | ) � x®((� | �)�x) 	����x®(��x) | x®(��x)
(® � | ) � x®((� | �)�x) ���(x®�)�x | (x®�)�x
(® ∧ | ) � x®T ∧ (� | �) 	����(x®T ∧ �) | (x®T ∧ �)
(® � | ) � (x®T��) | (x®T��)��� x®T � (� | �)
(� n[]) � y[�]�x 	����y[��x] (x ≠ y)
(� n[]) � x[�]�x 	����F
(@ ®) � (x®�)@x�	��� F
(@ ® ≠) � (x®�)@y�	��� x®(�@y) (x ≠ y)
(® � n[]) � x®(y[�]�x) 	����y[x®(��x)] (x ≠ y)
(® ∧ n[]) � x®T ∧ y[�] 	����y[x®T ∧ �] (x ≠ y)
(� ® ≠) � x®(��y) ���(x®�)�y
(® �) � �x.y®� 	����y®�x.� where x ≠ y
(® �) � y®�x.� ����x.y®� where x ≠ y
�

Remark. The derived rule (® ¬0) says that if we reveal a restricted name and find non-0,
then the original process is also non-0. That is, non-0-ness cannot be hidden by restriction.
Consider, for example, the process P = (νn)n[]. Under many standard behavioral equiva-
lences ≈ we have P ≈ 0 [26]. However, we have P ��n®¬0, and hence by (® ¬0), we have
that P ��¬0. This example shows quite clearly that our logic is finer than standard behav-
ioral equivalences, and that it can inspect the structure of restricted processes. �

10-13  Logical Corollaries (Case Analysis)
Let �� be a classical predicate (typically, �� is a side condition of the form x ≠ y).

(CA | ∧) � (�� ∧ �) | (�� ∧ �)�	��� �� ∧ (� | �)
(CA | �) � (�� � �) | (�� � �)��� �� � (� | �)
(CA n[] ∧) � z[�� ∧ �]�	��� �� ∧ z[�] where z may occur in ��
(CA ® ∧) � z®(�� ∧ �)�	��� �� ∧ z®� where z may occur in ��
�

The following rules for Hx.��can be derived by combining the rules for revelation and
for the fresh-name quantifier.

10-14  Logical Corollaries for Definition 7-1 (Hidden-Name Quantifier)
(H �) � �x. (x#N ∧ x®T) � x®��	��� Hx.� where N ⊇ fnv(�)-{x} and x ��N
(H �) � Hx.� 	�����x. x#N ∧ x®T ∧ x®� where N ⊇ fnv(�)-{x} and x ��N

 	�����x. x#N ∧ x®�
(ν R) � ∧ x#N ∧ x®T �� x®� � ���� Hx.� where N ⊇ fnv(�)-{x} and x ��N ∪ fv(�)
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(ν L) x®� ∧ x#N �� � � Hx.���� � where N ⊇ fnv(�)-{x} and x ��N ∪ fv(�)
(ν E) ���� Hx.�;� x®� ∧ x#N �� � � ���� � where N ⊇ fnv(�)-{x} and x ��N ∪ fv(�)
(H ��) � ���� � Hx.� ���Hx.�
(H fv) � Hx.(��x) 	��� � where x ��fv(�)
(H fv) � � �� Hx.� where x ��fv(�)
(H ®) � Hx.(x®�) 	��� Hx.�
(H �) � Hx.(��x) �� Hx.�
(H 0) � Hx.0�	��� 0
(H n[]) � Hx.y[�]�	��� y[Hx.�] where x≠y
(H | ) � Hx.(� | x®�)�	��� (Hx.�) | (Hx.�)
(H � | ) � Hx.(��x) | Hx.(��x) 	��� Hx.((� | �)�x)
�

10.2  Proofs
Proof of Lemma 3-3

The proof is an extension of the proof of the analogous property for our earlier modal
logic [13]. If m=m’ the lemma holds trivially, so we may assume that m≠m’. The proof
is by induction on the number of symbols in the closed formula �. The number of sym-
bols in a formula is unchanged by substituting a name for a variable or another name.
Consider an arbitrary process P, and any names m and m’. We show only the cases for
revelation and hiding. The cases for the other constructs are the same as in our earlier
proof.
In the case for revelation, ��= n®�,�we prove each direction of the following separate-
ly, assuming that m’ � fn(P)∪fn(n®�) (and hence m’≠n).

P � n®� ⇔ P{m←m’} � (n®�){m←m’}.

(�)  Assume P � n®�, that is, there is P’ such that P�� (νn)P’ and P’ � �. By Lemma 2-
1(1), P�� (νn)P’ implies n � fn(P) and m’ � fn(P’). By Lemma 3-2, m’ � fn(P) and P
� (νn)P’ implies P{m←m’}�� ((νn)P’){m←m’}. Since m’ � fn(P’)∪fn(�), the induc-
tion hypothesis implies that P’{m←m’} � �{m←m’}.
Next, suppose that m=n. We get that (νm’)(P’{m←m’}) � m’®(�{m←m’}). Since m’
� fn(P’) and m=n we have (νm’)(P’{m←m’}) = (νm)P’ = ((νn)P’){m←m’}. More-
over, m’®(�{m←m’}) = (n®�){m←m’}. Hence, ((νn)P’){m←m’} �
(n®�){m←m’}. By Lemma 3-1, P{m←m’}�� ((νn)P’){m←m’} implies P{m←m’}
� (n®�){m←m’}.
Otherwise, suppose that m≠n. We get that (νn)(P’{m←m’}) � n®(�{m←m’}). Since
m≠n and m’≠n we have (νn)(P’{m←m’}) = ((νn)P’){m←m’}. Since m≠n we have
n®(�{m←m’}) = (n®�){m←m’}. Hence, ((νn)P’){m←m’} � (n®�){m←m’}. By
Lemma 3-1, P{m←m’}�� ((νn)P’){m←m’} implies P{m←m’} � (n®�){m←m’}.
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(⇐)  Assume P{m←m’} � (n®�){m←m’}.
First, suppose that m=n. By assumption, there is P’ such that P{m←m’}�� (νm’)P’ and
P’ � �{m←m’}. By Lemma 2-1(1), P{m←m’}� � (νm’)P’ implies that m’ �
fn(P{m←m’}) and m � fn((νm’)P’). Since m≠m’ we get that m � fn(P)∪fn(P’) and P
� (νm’)P’. By induction hypothesis, m �� fn(P’)∪fn(�{m←m’}) implies that
P’{m’←m} � �{m←m’}{m’←m}, that is, P’{m’←m} � �. By definition of satisfac-
tion, (νm)(P’{m’←m}) � m®�, that is, (νm’)P’ � m®�. By Lemma 3-1, P�� (νm’)P’
implies P�� m®�, that is, P�� n®�.
Second, suppose that m≠n. By assumption, there is P’ such that P{m←m’}�� (νn)P’
and P’ � �{m←m’}. By Lemma 2-1(1), P{m←m’}� � (νn)P’ implies that m �
fn((νn)P’). Since m≠n, m � fn(P’). By induction hypothesis, m �
fn(P’)∪fn(�{m←m’}) implies that P’{m’←m} � �{m←m’}{m’←m}, that is,
P’{m’←m} � �. By definition of satisfaction, (νn)(P’{m’←m}) � n®�. By Lemma
3-2, m’ � fn(P{m←m’}) and P{m←m’}{m’←m} �� ((νn)P’){m’←m} implies
P{m←m’}{m’←m} ��((νn)P’){m’←m}. Hence from m’ � fn(P), m≠n, and n≠m’ we
can calculate P = P{m←m’}{m’←m} �� ((νn)P’){m’←m} = (νn)(P’{m’←m}). By
Lemma 3-1, this and (νn)(P’{m’←m}) � n®��imply P � n®�.
In the case for hiding, �� = ��n, we prove the following directly, where m’ �
fn(P)∪fn(��n) (and hence m’≠n).

P � ��n ⇔ P{m←m’} � (��n){m←m’}.
First, suppose that m=n. By definition, P � ��n ⇔ (νn)P � �. By induction hypoth-
esis, m’ � fn((νn)P)∪fn(�) implies (νn)P � � ⇔ ((νn)P){n←m’} � �{n←m’}. We
have ((νn)P){n←m’} = (νn)P = (νm’)(P{m←m’}), since m’ � fn(P) and m=n. By def-
inition, (νm’)(P{m←m’}) � �{n←m’} ⇔ P{m←m’} � �{n←m’}�m’. From m=n
we have �{n←m’}�m’ = (��n){m←m’}.
Second, suppose that m≠n. By definition, P � ��n ⇔ (νn)P � �. By induction hy-
pothesis, m’ � fn((νn)P)∪fn(�) implies (νn)P � � ⇔ ((νn)P){m←m’} � �{m←m’}.
We have ((νn)P){m←m’} = (νn)(P{m←m’}), since m≠n and m’≠n. By definition,
(νn)(P{m←m’}) � �{m←m’} ⇔ P{m←m’} � �{m←m’}�n. From m≠n we have
�{m←m’}�n = (��n){m←m’}.

�

Proof of Proposition 4-1

(1) Assume vld(�); that is, assume �ϕ
fv(�)→Λ. �P
Π. P � �ϕ. Take any
ψ
fv((�){x←n})→Λ and any P
Π. If x
fv(�), by instantiating the assumption with
ϕ = ψ{x←n} we have P � �ψ{x←n}, which is the same as �{x←n}ψ, since x�dom(ψ).
If x�fv(�), by instantiating the first assumption with ϕ = ψ we have P � �ψ, which is
the same as �{x←n}ψ. In both cases, we have shown that �ψ
fv((�){x←n})→Λ.
�P
Π. P � �{x←n}ψ, that is, vld(�{x←n}).
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(2) Let � = ���� �. Assume � is valid, that is vld(��� �). By (1), we have vld((���
�){x←n}), that is �{x←n}.

�

Proof of Proposition 4-2

(1) (Proof outline) By induction on the structure of �{−}, with induction hypothesis:
���,��
Φ. vld(��⇔��) � vld(�{��}⇔�{��}), that is:
���,��
Φ. (�ϕ
fv(��,��)→Λ. �P
Π. P � ��ϕ ⇔ P � ��ϕ) 
 � (�ϕ
fv(�{��},�{��})→Λ. �P
Π. P � �{��}ϕ ⇔ P � �{��}ϕ).

(2) Assume ���	��� ��, that is vld(���⇔ ��). By (1), vld(�{��} ⇔ �{��}), that is �{��}
	��� �{��}.

�

Proof of Proposition 4-4

(1) Assume vld(�{T}) ∧ vld(�{F}). Take any ϕ
fv(�{�})→Λ and P
Π. By assump-
tion we have P � �ϕ{T} and P � �ϕ{F}. Since ��is classical, we have also that {Q �
Q � �ϕ} 
 {Π, �}. Consider the case where {Q ��Q � �ϕ} = Π. For the closed formula
�ϕ we have vld(�ϕ ⇔ T). By Proposition 4-2, vld(�{�ϕ} ⇔ �{T}), and in particular
P � �ϕ{�ϕ} iff P � �ϕ{T}, hence we obtain P � �ϕ{�ϕ}, that is P � �{�}ϕ. Consider
now the case where {Q ��Q � �ϕ} = � . For the closed formula �ϕ we have vld(�ϕ ⇔
F). By Proposition 4-2, vld(�{�ϕ} ⇔ �{F}), and in particular P � �ϕ{�ϕ} iff P �
�ϕ{F}, hence we obtain P � �ϕ{�ϕ}, that is P � �{�}ϕ. In both cases, we have
shown that �ϕ
fv(�{�})→Λ. �P
Π. P � �{�}ϕ, that is vld(�{�}).

(2) Let �{−} be ��{−}��� ��{−}. Assume �{T} and �{F}, that is vld((���� ��){T}) and
vld((���� ��){F}). By (1), we have vld((���� ��){�}), that is �{�}.

�

Proof of Proposition 4-5

(Cut) Assume �P:Π. P � ��� P � ��∨ P � �, and �P:Π. P � ���∧ P � ��� P � ��. Take
any P:Π and assume P � ��∧ P � ��. From the first assumption we obtain P � ��∨ P
� �. That is, either P � ��holds, and then also P � ��∨ P � �� holds, or P � ��holds,
in which case from the second assumption we obtain that P � ���holds, and then also
P � ��∨ P � �� holds. We have shown that �P:Π. P � ��∧ P � ���� P � ��∨ P � ��.

(All others) Follow by trivial arguments from the definition of sequent validity.
�

Proof of Corollary 6-2

(1) 
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Case �) Assume �m
Λ. m� fn(P,�) ∧ P � �{x←m}. Take N = fn(P,�) to obtain �N

Fin(Λ). N ⊇ fn(P,�) ∧ �m
Λ. m�N ∧ P � �{x←m}.

Case ⇐) Assume �N
Fin(Λ). N ⊇ fn(P,�) ∧ �m
Λ. m�N ∧ P � �{x←m}. In particular,
�m
Λ. m� fn(P,�) ∧ P � �{x←m}.

(2) Assume �m
Λ. m� fn(P,�) ∧ P � �{x←m}. By (1), this is equivalent to �N
Fin(Λ).
N ⊇ fn(P,�) ∧ �m
Λ. m�N ∧ P � �{x←m}. By Proposition 6-1, this is in turn equiv-
alent to �N
Fin(Λ). N ⊇ fn(P,�) ∧ �m
Λ. m�N � P � �{x←m}.

(3) 
Case �) Assume �m
Λ. m�fn(P,�) ∧ P � �{x←m}. Take any N ⊇ fn(P,�). From the

assumption, by Proposition 6-1, we have �m
Λ. m�fn(P,�) � P � �{x←m}. In par-
ticular, �m
Λ. m�N � P � �{x←m}. Then, by Proposition 6-1, �m
Λ. m�N ∧ P �
�{x←m}. We have shown �N
Fin(Λ). N ⊇ fn(P,�) � �m
Λ. m�N ∧ P � �{x←m}.

Case ⇐) Assume �N
Fin(Λ). N ⊇ fn(P,�) � �m
Λ. m�N ∧ P � �{x←m}. Take N =
fn(P,�) to obtain �N
Fin(Λ). N ⊇ fn(P,�) ∧ �m
Λ. m�N ∧ P � �{x←m}. By (1),
�m
Λ. m�fn(P,�) ∧ P � �{x←m}.

(4) 
Case �) Assume �m
Λ. m�fn(P,�) ∧ P � �{x←m}. By (3), �N
Fin(Λ). N ⊇ fn(P,�)
� �m
Λ. m�N ∧ P � �{x←m}. Take any N
Fin(Λ) such that N ⊇ fn(P,�); by as-
sumption �m
Λ. m�N ∧ P � �{x←m}, and by Proposition 6-1, �m
Λ. m�N � P �
�{x←m}. We have shown �N
Fin(Λ). N ⊇ fn(P,�) � �m
Λ. m�N � P �
�{x←m}.

Case ⇐) Assume �N
Fin(Λ). N ⊇ fn(P,�) � �m
Λ. m�N � P � �{x←m}. Take N =
fn(P,�) to obtain �N
Fin(Λ). N ⊇ fn(P,�) ∧ �m
Λ. m�N � P � �{x←m}. By (2),
�m
Λ. m�fn(P,�) ∧ P � �{x←m}.

�
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